

Vérins hydrauliques HMI/HMD

Vérins à tirants métriques pour pression de service jusqu'à 210 bar

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Gammes HMI/HMD

Introduction

Les gammes HMI et HMD décrites dans ce catalogue sont les vérins de la série Compact conformes aux normes ISO 6020/2 et DIN 24554, prévus pour être utilisés avec des pressions de service jusqu'à 210 bar, selon l'extrémité de tige et le type de service. Ces vérins ont été conçus pour répondre aux besoins d'une large gamme d'industries nécessitant des produits conformes aux normes ISO, DIN, ou AFNOR.

Pour compléter la gamme des vérins standard figurant dans ce catalogue, Parker offre à sa clientèle des vérins HMI et HMD conçus et réalisés « sur mesure » pour des exigences spécifiques. Nos techniciens seront heureux de mettre leur expérience à votre service pour aboutir à des conceptions destinées à des applications spéciales.

Comment consulter ce catalogue

Toutes les données concernent la gamme HMI. Lorsque les informations pour les gammes HMI et HMD diffèrent, les données relatives à HMD sont surlignées en jaune.

inPHorm et DAO 3D

Parker offre un logiciel convivial destiné à simplifier le processus de sélection des vérins, garantissant un gain de temps ainsi que la précision des conceptions et des dessins. Le logiciel de sélection InPHorm et le nouveau logiciel de modélisation CAO 3D peuvent être téléchargés sur le site Web de la Division Vérins européenne. Visitez notre site www.parker.com ou contactez votre agence locale pour plus d'informations.

Sommaire	Page
Comparaison entre les normes ISO et NFE	3
Caractéristiques de conception et avantages	4
Conceptions spéciales	6
Formes de montage	7
Dimensions des vérins	8
Vérins à double tige	12
Accessoires extrémité de tige et fond	13
Informations de montage	16
Tolérances de la course	17
Forces de poussée et de traction	17
Sélection des dimensions de tige	18
Entretoise de tige	19
Vérins à longue course	19
Amortissements	20
Limites de pression	23
Orifices	24
Vitesse du piston	24
Joints et fluides	25
Poids des vérins	25
Rechange et entretien	26
Réparations	27
Caractéristiques extrémité de tige et filetage	28
Comment commander	29

Parker offre la plus large gamme de vérins industriels

La division vérins de Parker Hannifin est le premier fournisseur mondial de vérins hydrauliques à usage industriel. Parker fabrique une vaste gamme de vérins standards et spéciaux à tirants, ronds et du type "Sidérurgique", pouvant ainsi satisfaire tous les types d'applications de vérins industriels. Nous disposons de vérins conformes aux normes ISO, NFE, DIN, NFPA, ANSI et JIC, tandis que d'autres certifications sont disponibles sur demande. Tous les vérins hydrauliques Parker sont conçus pour assurer un service longue durée et efficace, avec peu d'entretien, garantissant une productivité élevée.

A propos de Parker Hannifin

Leader mondial dans le secteur des technologies de déplacement et de commande, Parker Hannifin s'associe à ses clients pour augmenter leur productivité et leur rentabilité. La société emploie plus de 57 000 personnes dans 43 pays du monde entier, et fournit à ses clients une excellence technique et des services de tout premier plan.

Rendez-vous sur le site www.parker.com

AVERTISSEMENT — RESPONSABILITE DE L'UTILISATEUR

LA DÉFECTUOSITÉ OU LA SÉLECTION OU L'USAGE ABUSIF DES PRODUITS DÉCRITS DANS LE PRÉSENT DOCUMENT OU D'ARTICLES ASSOCIÉS PEUT ENTRAÎNER LA MORT, DES BLESSURES ET DES DOMMAGES MATÉRIELS.

Ce document et d'autres informations de Parker-Hannifin Corporation, ses filiales et distributeurs autorisés, proposent des options de produit et de système destinées aux utilisateurs possédant de solides connaissances techniques.

En procédant à ses propres analyses et essais, l'utilisateur est seul responsable de la sélection définitive du système et des composants, au même titre qu'il lui incombe de veiller à la satisfaction des exigences en matière de performances, endurance, entretien, sécurité et avertissement. L'utilisateur doit analyser tous les aspects de l'application, suivre les normes applicables de l'industrie et les informations concernant le produit dans le catalogue de produits actuel et dans tout autre document fourni par Parker, ses filiales ou distributeurs agréés. Dans la mesure où Parker ou ses filiales ou distributeurs agréés fournissent des options de système ou de composant se basant sur les données ou les spécifications indiquées par l'utilisateur, c'est à celui-ci qu'incombe la responsabilité de déterminer si ces données et spécifications conviennent et sont suffisantes pour toutes les applications et utilisations raisonnablement prévisibles des composants ou des systèmes.

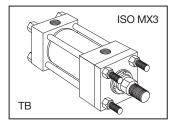
Offre de vente

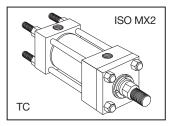
Veuillez contacter votre représentant Parker pour obtenir une « Offre de vente » détaillée.

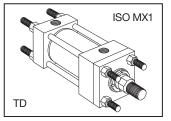
Comparaison entre les normes ISO et NFE

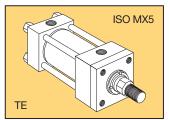
Les vérins métriques Parker des séries HMI et HMD en conformité avec les dimensions définies dans les normes ISO 6020/2 (2006), DIN 24554 et, en outre, AFNOR NFE 48.016, série 160 Bar Compact, peuvent être utilisés avec des pressions de service jusqu'à 210 bar.

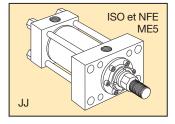
La gamme de vérins HMI, en conformités avec la norme ISO, inclue tous les types de montages ci-contre, excepté le style TE. Les 6 types de montages disponibles avec les vérins HMD, sont conformes à la norme NFE 48.016. Les fixation HH, C, SBd et DD conformes aux normes ISO – DIN/AFNOR sont interchangeables. Seul la forme JJ differe légerement de par sa forme de conception.

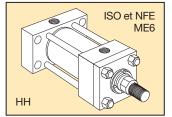

- 6 formes de montage disponibles
- 2 dimensions tige pour chaque alésage
- 1 filetage extérieur de tige pour chaque alésage

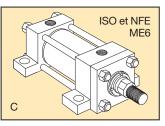

Séries vérins suivant ISO 6020/2 (1991)

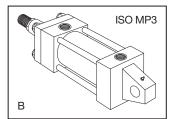

- 12 différentes formes standard de montage
- jusqu'à 3 dimensions tige pour chaque alésage
- jusqu'à 3 filetages extérieurs et 3 filetages intérieurs pour chaque alésage
- un éventail plus large d'accessoires de montage et d'extrémité de tige
- un éventail plus large d'options spéciales

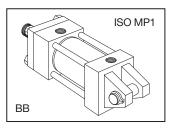

Séries suivant ISO et AFNOR

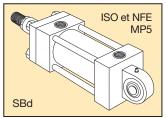

- pression de service jusqu'à 210 bar
- alésages 25-200 mm
- diamètres de la tige 12-140 mm
- options spéciales pour tige simple ou double tiges
- course toutes les longueurs de course pratiques
- amortisseurs disponibles d'un côté ou des deux côtés
- fluides et joints 5 types de joints aptes à un large éventail de fluides ayant des caractéristiques différentes
- température standard -20 °C à +150 °C selon le type de fluide et des joints utilisés

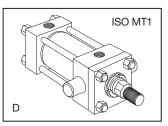


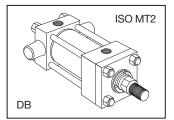


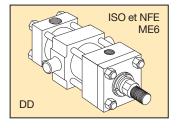


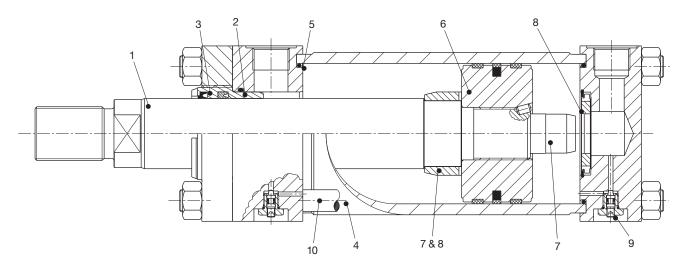




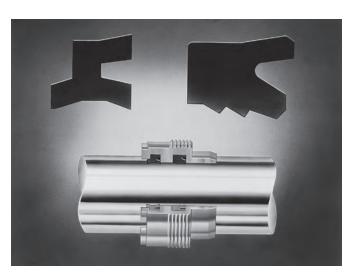








1 Tige


La durée de vie de la cartouche est optimisée grâce à la rectification de précision de la tige, à l'emploi d'acier au carbone à haute résistance, au chromage dur, de 20 microns maxi. Les tiges de piston sont durcies superficiellement par traitement haute fréquence (dureté Rockwell C54) leur conférant une surface insensible aux chocs et prolongeant la vie des joints.

2 Cartouche de tige Parker

Le long guidage à l'intérieur du joint à lèvre, assure un graissage en continu et donc une meilleure longévité de la cartouche. La cartouche, avec les joints de tige, est aisément amovible et peut être remplacée sans démonter le vérin, d'où les économies de main-d'oeuvre à l'entretien et à la réparation.

3 Joints de tige

Le joint d'étanchéité multi-lèvres possède une série de petites lèvres qui entrent successivement en action au fur et à mesure que la pression augmente en assurant une étanchéité efficace quelle que soit la condition de service. Lors de la rentrée de tige les lèvres font fonction de clapet anti-retour, ramenant le film d'huile à l'intérieur du vérin.

Le joint racleur de tige à double lèvre agit comme un deuxième joint d'étanchéité, en retenant le film d'huile lubrifiante en excès dans la chambre entre le racleur de tige et les lèvres du joint. La lèvre extérieure du joint empêche l'entrée dans le vérin de tout contaminant. Là aussi, la durée de vie de la cartouche et des joints sera prolongée.

Les joints à lèvres sont réalisés en standard en polyuréthane renforcé de façon à pouvoir retenir efficacement les fluides ou pressions et conférer une durée de vie cinq fois plus longue que celle des joints réalisés en matériaux traditionnels. Les joints standard conviennent à des vitesses jusqu'à 0,5 m/sec; vous pouvez demander en option les joints à configuration spéciale pour des vitesses plus élevées.

4 Corps du vérin

Une réalisation de qualité, rigoureusement contrôlée ainsi que des usinages de precision permettent d'obtenir des corps de vérins strictement rectilignes, et concentriques. Les tubes, en acier, sont rodés et polis afin de minimiser les coefficients internes de frottement et prolonger la durée de vie des joints.

5 Joints d'étanchéité sur le corps du vérin

La conception de montage des joints de corps permet de se premunir de tous chocs hydrauliques.

6 Piston monobloc

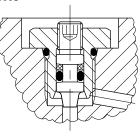
Les joints porteurs de piston offrent une résistance aux contraintes latérals. Un long filetage fixe le piston sur la tige. Pour une securité optimale, les pistons sont bloqués à la loctite complété par un clavetage mécanique.

Pour répondre aux différents besoins d'applications trois combinaisons piston/joints son disponibles, consulter le paragraphe ci-contre "joints de piston".

Caractéristiques de conception et avantages

Gammes HMI/HMD

7 Amortissement


Afin de permettre une décéleration progressive, les amortisseurs (optionnels) de tête et de fond sont de type etagé. (Voir page 20 pour plus de détails). La douille d'amortissement côté tête est auto-centrée, tandis que le plongeur d'amortisseur arrière est poli, et partie integrante de la tige.

8 Amortisseurs auto-ajustables

Un amortisseur flottant ainsi qu'une douille flottante, respectivement placées sur le côté tête et le côté fond du vérin, favorisent la réalisation de tolérances réduites assurant ainsi un meilleur contrôle d'amortissement. Un clapet anti-retour située côté tige, ainsi qu'une bague auto-ajustable située côté fond permettent un démarrage rapide de la course retour grace a l'action de la pression sur l'entière surface du piston, réduction des cycles de fonctionnement.

9 Réglage d'amortissement

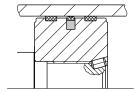
Les têtes et fonds de vérin sont dans ce cas équipés de pointeaux de réglage d'amortissement, protégés de tous démontages intempestifs. Le concept : amortisseur cartouche comme illustré est valable pour les vérins de diamètre jusqu'à 125 mm. Voir page 24.

10 Conception des tirants

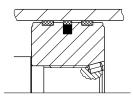
La précontrainte des tirants applique une force de compression sur le tube du vérin, qui s'oppose aux forces de traction créées par la pression du système.

Cette construction sans fatigue garantissant une longue durée de vie et dimensions exceptionnellement compactes.

Conceptions spéciales


Parker met à la disposition son propre personnel technique expert en cas de conceptions spéciales selon les spécifications fournies par le client. Des systèmes d'étanchéité alternatifs, configurations de montage spéciales, l'alésage différent du vérin et les dimensions alternatives de la tige, ne sont que quelques exemples de conception que nous pouvons réaliser.

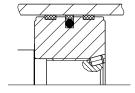
Joints de piston


Diverses options de joints de pistons sont proposées afin de convenir à différentes applications.

Les pistons standards sont appropriés pour maintenir une charge en position, les joints de piston étant étanches contre

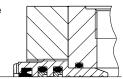
les fuites lors de conditions de services normales. Les joints porteurs empêchent le contact métal-métal. Les joints de pistons standards sont conviennent pour des vitesses de pistons pouvant atteindre 0,5 m/s.

Les pistons LoadMaster sont équipés de joints porteurs permettant des utilisations dans des conditions de service difficile. Ils sont recommandés dans le cas de vérins avec longue course et en particulier avec montage oscillant.



Vérins asservis

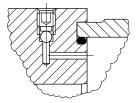
Les vérins asservis permettent un contrôle précis de l'acceleration, vitesse et position dans le cas ou de très faibles frictions ou de déplacement sans "stick-slip" sont requis. Ils peuvent être utilisés en combinaison avec des capteurs internes ou externes.


Joints à faible friction pour piston

Ils sont équipés de joints porteurs en PTFE et peuvent être utilisés pour des vitesses de pistons pouvant atteindre 1 m/s. Ils ne sont pas adaptés pour supporter des charges en position fixe.

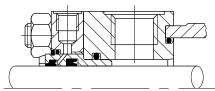
Joints à faible friction pour cartouche

Ils comportent deux joints anti-usure étagés en PTFE et un joint racleur de tige à double lèvre; voir à la page 25.



Gammes HMI/HMD

Purges


L'option purges est disponible pour tous les vérins en tête et fond et dans toutes les positions, excepté la face recevant l'orifice d'alimentation. Elles sont encastrées tant sur la tête que sur le fond en vue d'éviter tout enlèvement par mégarde. Il est à noter que pour

les vérins d'alésages 50 mm et supérieurs, s'il est essentiel que les purges soient fournies à côté de l'orifice d'alimentation, des bossages soudés recevant les purges seront réalisés sur les tubes de vérins. Consulter Parker pour tous détails.

Drain de cartouche

Un drain optionnel de la cartouche peut être envisagé pour empêcher toute accumulation de fluide hydraulique en arrière du racleur dans les vérins à longue course ou dans ceux soumis à des contre-pressions constantes. Un orifice entre le racleur et le joint d'étanchéité à lèvre permet de renvoyer le fluide dans le réservoir. Un tuyau rilsan transparent relira l'orifice de drainage au réservoir. Si le vérin est installé dans un emplacement inaccessible, il servira d'indicateur d'usure du joint de pression de tige.

Un drain de cartouche 1/8 BSPP peut être monté dans la contre plaque avant pour tous les montages sauf pour :

- Style JJ, avec alésages 25 à 80 mm, et style D, avec alésages 100 à 200 mm, où il sera monté dans la tête.
- Quand le drain est monté dans la contre plaque, l'épaisseur de la contre plaque recevant le drain de cartouche sera augmentée de 6 mm pour les alésages de 32 et 40 mm avec tige no 2, et de 4 mm pour l'alésage 63 mm avec tige no. 2.
- Pour la forme JJ, l'orifice de drain ne pourra pas être positionné sur la même face que l'orifice ou clapet anti-retour d'amortissement. Dans ce cas, veuillez nous consulter.

Méplats d'extrémité de tige

Les extrémités de tige standard sont fournies avec deux méplats mais une option à quatre méplats est disponible pour faciliter l'accès dans des espaces confinés. Voir les codes des extrémités de tige 1, 2 et 5 dans le code de commande à la page 29. Notez que la plus grande surface d'épaulement sur la version à deux côtés offre une plus grande résistance à la fatigue dans certaines applications en poussée – voir les limites de pression à la page 23.

Réglage de course

Lorsqu'une grande précision dans la longueur de la course est nécessaire, un système adjustable à vis peut être livré. Plusieurs solutions sont disponibles. Veuillez nous consulter en spécifiant les détails de l'application et le réglage souhaité.

Dispositifs de bloquage de tige

Ces dispositifs permettent le blocage mécanique de la tige. Leur désenclenchement est actionné par la présence de la pression

hydraulique et ils se déclenchent en cas de manque de pression, en faisant fonction de dispositif de sécurité. Pour plus de détails, veuillez nous contacter.

Vérins à simple effet

Les vérins HMI et HMD sont livrés en fabrication standard à double effet mais peuvent être utilisés comme des vérins à simple effet en utilisant la charge ou une force externe pour faire repositionner le piston après la course.

Vérins à simple effet à rappel par ressort

Les vérins de la série HMI et HMD peuvent également être livrés avec rappel par ressort pour le retour du piston après la course. Veuillez préciser les conditions de charge et les frottements et indiquer en outre si le ressort doit faire avancer ou reculer le piston.

Pour les vérins à rappel par ressort nous recommandons des tirants prolongés de façon à permettre le "dégagement" complet du ressort. Dans ce cas nous conseillons de souder les écrous aux tirants du côté contraire du vérin pour garantir un démontage sans risque. Veuillez nous consulter pour toute application avec rappel par ressort.

Courses avec plusieurs positions

Pour obtenir une force développée linéairement dans un plan, avec plusieurs points d'arrêts intermédiaires, plusieurs solutions sont possibles. Pour trois positions, le système pratiqué est d'assembler deux vérins standard, fond contre fond, (style HH) ou de se servir de tirants passants. L'extension ou la rétraction des tiges de chaque vérin individuellement permet d'obtenir trois positions des extrémités de tiges. Une autre possibilité technique est d'utiliser un vérin tandem, avec une tige indépendante sur le côté fond. Pour plus de détails, veuillez nous consulter.

Soufflets de tige

Dans certains conditions les surfaces de tiges exposées à l'action des substances de contamination pouvant se solidifier dans l'air, doivent être dotées d'une protection supplémentaire par soufflet. Dans ce cas prévoir la surlongueur de tige nécessaire pour monter le soufflet. Pour plus de détails, veuillez nous contacter.

Racleur métallique

Dans les applications où des substances contaminantes tendent à se coller sur la sortie de tige de piston en entraînant une détérioration prématurée des joints, nous conseillons de remplacer le racleur normal par un métallique. L'utilisation d'un racleur métallique ne modifie pas les dimensions du vérin dont l'alésage est de 50 mm et au-dessus – alors que les dimensions d'alésage plus petites sont critiques, veuillez nous contacter.

Détecteur de position courant continu

Des détecteurs de position peuvent être livrés pour contrôler la fin de course des vérins. Pour plus de détails, veuillez nous consulter

Capteurs de position

Sur les vérins de la série HMI et HMD on peut utiliser plusieurs types de capteurs linéaires de position en continu. Pour plus de détails, consulter le catalogue HY07-1175.

Formes de montage et application

Montage par tirants prolongés - Styles TB, TC, TD et TE Application

- compression (poussée) utilisation des fixations sur fond TC ou TD
- tension (traction) utilisation des fixations sur tête TB, TD ou TE

Avantages

- facilité d'installation lorsque l'espace est limité
- grande efficacité la force est absorbée sur l'axe central du vérin
- La fixation à deux extrémités TD permet le montage de brides ou d'interrupteurs

Montage par bride - Styles JJ et HH Application

- compression (poussée) utilisation des fixation sur fond HH
- tension (traction) utilisation des fixation sur tête JJ

Avantages

- fixation exceptionnellement rigide grâce à une grande surface de bride
- grande efficacité la force est absorbée sur l'axe central du vérin

Montage par pattes - Style C

Application

- convient pour les applications de poussée et de traction
- la force n'est pas absorbée sur l'axe central fixation solide, p. ex.: une clavette de butée (page 16) et un guidage efficace de la charge sont essentiels

Avantages

• facilité d'installation et de réglage

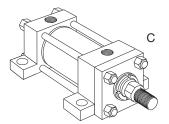
Montage par pivots – Styles B, BB et SBd Application

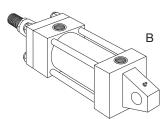
- transfert de forces curviligne
- mouvement sur un seul plan utilisation du vérin de style BB à chape sur fond
- mouvement sur plusieurs plans utilisation du vérin de style SBd à palier sphérique

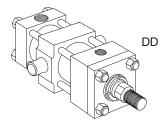
Avantages

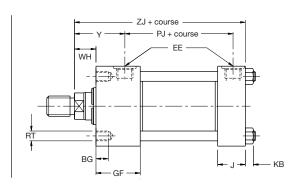
- fixation aisée utilisation avec palier lisse ou sphérique à l'extrémité de la tige
- plus grande flexibilité pour le concepteur de machines
- auto-alignement résiste à l'usure des surfaces d'appui de vérin

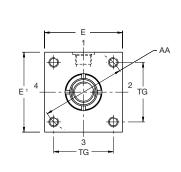
Montage par tourillons – Styles D, DB et DD Application

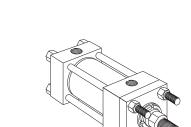

- transfert de forces curviligne
- mouvement dans un seul plan
- compression (poussé) utilisation des fixations DB ou DD
- tension (traction) utilisation des fixations D ou DD

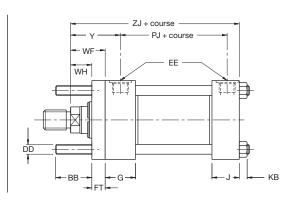

Avantages

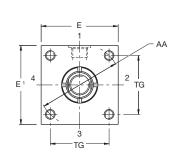

- auto-alignement résiste à l'usure des surfaces d'appui de vérin
- grande efficacité la force est absorbée sur l'axe central du vérin
- fixation aisée utilisation avec palier lisse ou sphérique à l'extrémité de la tige

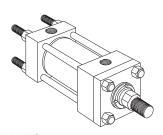


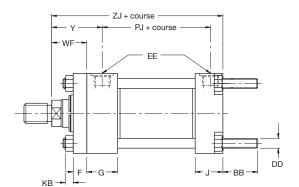


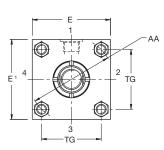


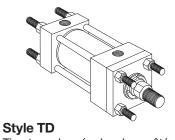




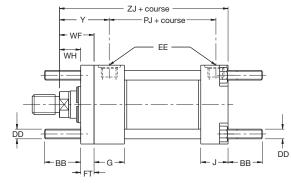


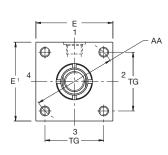

Style TB
Tirants prolongés côté tête
Conforme ISO MX3





Style TC
Tirants prolongés côté fond
Conforme ISO MX2

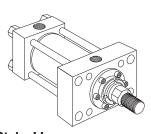




Style TD

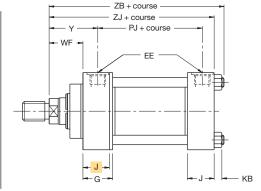
Tirants prolongés des deux côtés

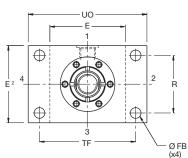
Conforme ISO MX1

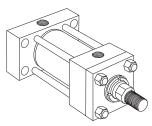


¹ Sur les vérins d'alésage 25 mm à 32 mm l'épaisseur de la tête est augmentée de 5 mm pour pouvoir loger l'orifice.

Dimensions - TB, TC, TD et TE Voir aussi Dimensions, page 28 et les Informations de montage, page 16

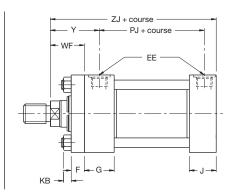

Alésage		DD.	20	_	EE	F				KD	то.	\A/E		· ·	+ co	urse
ø	AA	BB	DD	E	(BSPP)	max	FT	G	J	KB	TG	WF	WH	Y	PJ	ZJ
25	40	19	M5x0,8	40 ¹	G ¹ / ₄	10	10	40	25	4	28,3	25	15	50	53	114
32	47	24	M6x1	45 ¹	G1/4	10	10	40	25	5	33,2	35	25	60	56	128
40	59	35	M8x1	64	G ³ / ₈	10	10	45	38	6,5	41,7	35	25	62	73	153
50	74	46	M12x1,25	76	G1/2	16	16	45	38	10	52,3	41	25	67	74	159
63	91	46	M12x1,25	90	G ¹ / ₂	16	16	45	38	10	64,3	48	32	71	80	168
80	117	59	M16x1,5	115	G ³ / ₄	20	20	50	45	13	82,7	51	31	77	93	190
100	137	59	M16x1,5	130	G ³ / ₄	22	22	50	45	13	96,9	57	35	82	101	203
125	178	81	M22x1,5	165	G1	22	22	58	58	18	125,9	57	35	86	117	232
160	219	92	M27x2	205	G1	25	25	58	58	22	154,9	57	32	86	130	245
200	269	115	M30x2	245	G1 ¹ / ₄	25	25	76	76	24	190,2	57	32	98	165	299

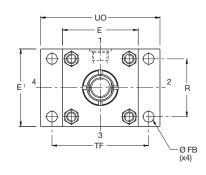



Style JJ Bride rectangulaire avant

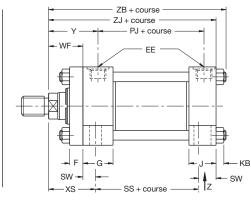
conforme ISO ME5 NFE ME5

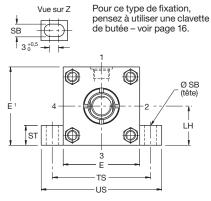
Note: une tête monobloc équipe les vérins d'alésages 25 à 40 mm.

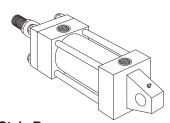




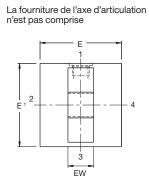
Style HH

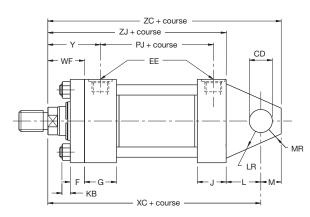

Bride rectangulaire arrière

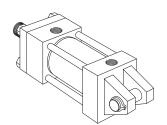

conforme ISO ME6 NFE ME6


- ¹ Sur les vérins d'alésage 25 mm à 32 mm l'épaisseur de la tête est augmentée de 5 mm pour pouvoir loger l'orifice.
- ² Sur les vérins d'alésage 25 mm et 32 mm, montage JJ avec orifices en positions 2 ou 4, l'épaisseur de la tête E est augmentée de 5 mm en position 1

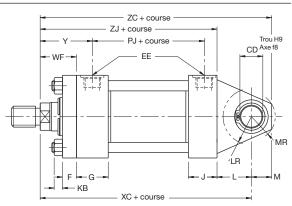
Dimensions – JJ, HH et C Voir aussi Dimensions, page 28 et les Informations de montage, page 16


Alégona		EE	F																		+ co	urse	
Alésage Ø	E	(BSPP)	max	FB	G	J	КВ	LH h10	R	SB	ST	SW	TF	TS	UO	US	WF	xs	Υ	PJ	SS	ZB max	ZJ
25	40 1	G1/4	10	5,5	40	25	4	19	27	6,6	8,5	8	51	54	65	72	25	33	50	53	72	121	114
32	45 1	G1/4	10	6,6	40	25	5	22	33	9	12,5	10	58	63	70	84	35	45	60	56	72	137	128
40	64	G ³ /8	10	11	45	38	6,5	31	41	11	12,5	10	87	83	110	103	35	45	62	73	97	166	153
50	76	G1/2	16	14	45	38	10	37	52	14	19	13	105	102	130	127	41	54	67	74	91	176	159
63	90	G1/2	16	14	45	38	10	44	65	18	26	17	117	124	145	161	48	65	71	80	85	185	168
80	115	G ³ / ₄	20	18	50	45	13	57	83	18	26	17	149	149	180	186	51	68	77	93	104	212	190
100	130	G ³ / ₄	22	18	50	45	13	63	97	26	32	22	162	172	200	216	57	79	82	101	101	225	203
125	165	G1	22	22	58	58	18	82	126	26	32	22	208	210	250	254	57	79	86	117	130	260	232
160	205	G1	25	26	58	58	22	101	155	33	38	29	253	260	300	318	57	86	86	130	129	279	245
200	245	G11/4	25	33	76	76	24	122	190	39	44	35	300	311	360	381	57	92	98	165	171	336	299

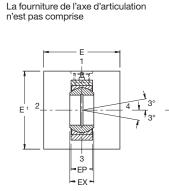


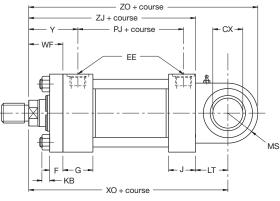

Gammes HMI/HMD

Style B
Tenon mâle arrière
conforme ISO MP3



Style BB
Chape femelle arrière
conforme ISO MP1

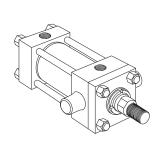




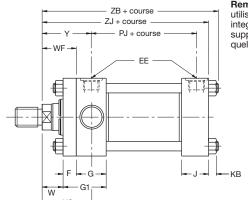
Style SBdTenon arrière fixe à rotule ²

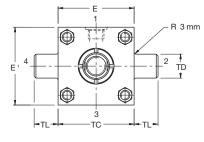
conforme ISO MP5

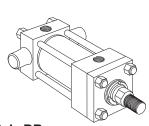
NFE MP5


¹ Sur les vérins d'alésage 25 mm à 32 mm l'épaisseur de la tête est augmentée de 5 mm pour pouvoir loger l'orifice. ² Le graisseur illustré est installé sur les vérins de 50 mm d'alésage et supérieurs. Les vérins d'alésage inférieurs possèdent un trou de 2,5 mm servant à la lubrification.

Dimensions - B, BB et SBd Voir aussi Dimensions, page 28 et les Informations de montage, page 16

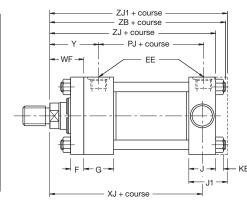

Alégono		СВ	CD				EE		EW		F									MC					+ cc	ourse		
Alésage Ø		A16	H9	CW	СХ	E	(BSPP)	EP	h14	EX	max	G	J	КВ	L	LR	LT	М	MR	MS max	WF	Y	PJ	хс	хо	zc	ZJ	zo
25	Ì	12	10	6	12 -0,008	40 ¹	G1/4	8	12	10	10	40	25	4	13	12	16	10	12	20	25	50	53	127	130	137	114	150
32		16	12	8	16 -0,008	45 ¹	G1/4	11	16	14	10	40	25	5	19	17	20	12	15	22,5	35	60	56	147	148	159	128	170,5
40		20	14	10	20 -0,012	64	G ³ / ₈	13	20	16	10	45	38	6,5	19	17	25	14	16	29	35	62	73	172	178	186	153	207
50		30	20	15	25 -0,012	76	G1/2	17	30	20	16	45	38	10	32	29	31	20	25	33	41	67	74	191	190	211	159	223
63	ĺ	30	20	15	30 -0,012	90	G ¹ / ₂	19	30	22	16	45	38	10	32	29	38	20	25	40	48	71	80	200	206	220	168	246
80		40	28	20	40 -0,012	115	G ³ / ₄	23	40	28	20	50	45	13	39	34	48	28	34	50	51	77	93	229	238	257	190	288
100		50	36	25	50 -0,012	130	G ³ / ₄	30	50	35	22	50	45	13	54	50	58	36	44	62	57	82	101	257	261	293	203	323
125		60	45	30	60 -0,015	165	G1	38	60	44	22	58	58	18	57	53	72	45	53	80	57	86	117	289	304	334	232	384
160	ĺ	70	56	35	80 -0,015	205	G1	47	70	55	25	58	58	22	63	59	92	59	59	100	57	86	130	308	337	367	245	437
200		80	70	40	100 -0,020	245	G1 ¹ / ₄	57	80	70	25	76	76	24	82	78	116	70	76	120	57	98	165	381	415	451	299	535

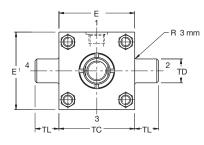

Gammes HMI/HMD

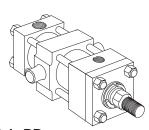


Style D
Montage par tourillon avant
conforme ISO MT1

Remarque: Dans les alésages 100 à 200 mm on utilisera une tête dotée de support de cartouche integrée (cote G1). Pour les alésages 160 et 200 mm, le support de cartouche est boulonné sur la tête, tandis queles tirants sont vissés directement sur la tête.

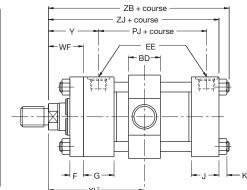


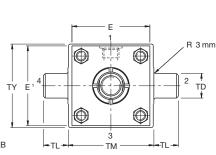

Style DB


Montage par tourillons arrière

conforme ISO MT2

Remarque: Sur les vérins d'alésage 80 à 200 mm, la cote J devient la cote J1. Sur les vérins d'alésage 100 à 200 mm, la cote ZJ1 va remplacer la cote ZB, et les tirants sont directement vissés sur le fond.



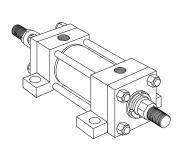


Style DD

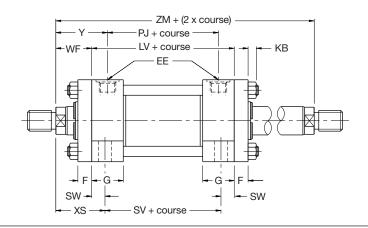
Montage par tourillons intermédiaires

conforme ISO MT4 NFE MT4

¹ Sur les vérins d'alésage 25 mm à 32 mm l'épaisseur de la tête est augmentée de 5 mm pour pouvoir loger l'orifice.


Dimensions - D, DB et DD Voir aussi Dimensions, page 28 et les Informations de montage, page 16

Alássas	Γ			EE	F							TD									+	cou	rse		Style	Min VI
Alésage Ø		BD	E	(BSPP)	max	G	G1	J	J1	KB	TC	f8	TL	ТМ	TY	W	WF	XG	Y	PJ	XJ	ZJ	ZJ1	ZB max	DD min course	Min XI dim'n ²
25	Г	20	40 ¹	G1/4	10	40	-	25	-	4	38	12	10	48	45	-	25	44	50	53	101	114	-	121	10	78
32		25	45 ¹	G1/4	10	40	-	25	-	5	44	16	12	55	54	-	35	54	60	56	115	128	-	137	10	90
40	Г	30	64	G ³ / ₈	10	45	-	38	-	6,5	63	20	16	76	76	-	35	57	62	73	134	153	-	166	15	97
50	Г	40	76	G ¹ / ₂	16	45	-	38	-	10	76	25	20	89	89	-	41	64	67	74	140	159	-	176	15	107
63	Г	40	90	G1/2	16	45	-	38	-	10	89	32	25	100	95	-	48	70	71	80	149	168	-	185	15	114
80		50	115	G ³ / ₄	20	50	-	45	50	13	114	40	32	127	127	-	51	76	77	93	168	190	194	212	20	127
100		60	130	G ³ / ₄	22	50	72	45	58	13	127	50	40	140	140	35	57	71	82	101	187	203	216	225	20	138
125	Г	73	165	G1	22	58	80	58	71	18	165	63	50	178	178	35	57	75	86	117	209	232	245	260	25	153
160		90	205	G1	25	58	88	58	88	22	203	80	63	215	216	32	57	75	86	130	230	245	275	279	30	161
200		110	245	G11/4	25	76	108	76	108	24	241	100	80	279	280	32	57	85	98	165	276	299	330	336	30	190



² Dimensions à spécifier par le client.

Gammes HMI/HMD

Vérin à double tige Disponible pour styles TB, TD, JJ, C,D, DD (Dans la figure style C)

Vérins à double tige

Montages disponibles et codes

Les vérins à double tige sont indiqués par la lettre "K" dans les codes pour les vérins, figurant à la page 29.

Gamme de vérins DIN

Les vérins à double tige HMD sont uniquement disponibles avec des types de montage JJ, C et DD et les numéros de tige 1 et 2. Ces vérins ne sont pas conformes à la norme DIN 24554.

Dimensions

Pour obtenir les caractéristiques dimensionnelles d'un vérin à double tige, choisir premièrement la forme de montage souhaitée et se reporter au modèle de vérin à simple tige comme défini aux pages précédentes (8–11). Après avoir déterminé toutes les dimensions nécessaires pour la forme à tige simple, les remplacer par les cotes figurant au tableau ci-contre pour pouvoir obtenir toutes les dimensions requises.

Robustesse des tiges

En demandant un vérin à double tige, une des tiges sera inévitablement plus faible que l'autre. Pour des raisons d'identification la tige la plus forte est marquée par la lettre "K". Veuillez utiliser la tige la plus faible uniquement pour les applications les moins difficiles. Les valeurs maximums nominales de pression changent, voir les limites de pression à la page 23.

Longueur minimum de la course – extrémité de tige styles 5 et 9

Si vous demandez un vérin à double tige avec course de 80 mm ou inférieure, l'alésage étant de 80 mm ou supérieur, veuillez nous consulter.

Alésage	Т	ige				
Ø	No.	мм ø				
25	1	12				
25	2	18				
00	1	14				
32	2	22				
40	1	18				
40	2	28				
	1	22				
50	2	36				
	3	28				
	1	28				
63	2	45				
	3	36				
	1	36				
80	2	56				
	3	45				
	1	45				
100	2	70				
	3	56				
	1	56				
125	2	90				
	3	70				
	1	70				
160	2	110				
	3	90				
	1	90				
200	2	140				
	3	110				

PI	us cour	se	Plus 2x course
LV	PJ	sv	ZM
104	53	88	154
108	56	88	178
125	73	105	195
125	74	99	207
127	80	93	223
144	93	110	246
151	101	107	265
175	117	131	289
188	130	130	302
242	160	172	356

Sélection des accessoires

Pour sélectionner les accessoires d'extrémité de tige faire référence au filetage de celle-ci (voir page 28). Si des accessoires doivent être utilisés en fond de vérin, ils seront choisis en se référant à l'alésage du vérin.

Les accessoires de tige ont un axe d'articulation de diamètre identique à celui utilisé en fond de vérin dans le cas de tige no.1, ou de tiges no.2 ou no.3 avec filetage de tige style 2 ou style 7.

Accessoires côté tige et fond

Côté tige, vérins HMI

- Chape femelle (1), support mâle (2) et axe d'articulation (3)
- Chape mâle (4), support femelle (5) et axe d'articulation (3)

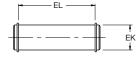
Côté tige, vérins HMI et HMD

 Tenon rotulé (6), ensemble support de montage et axe d'articulation (7)

Côté fond, vérins HMI

- Support mâle pour montage style BB (2)
- Support femelle pour montage style B (5)
- Axe d'articulation pour support femelle (3)

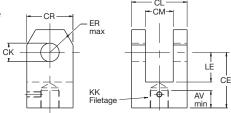
Côté fond, vérins HMI et HMD


 Ensemble support de montage/axe d'articulation pour montage style SBd (7)

Chape femelle, Support mâle et axe d'articulation

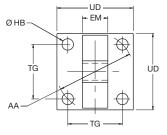
Filetage KK	
M10x1,25	
M12x1,25	
M14x1,5	
M16x1,5	
M20x1,5	
M27x2	
M33x2	
M42x2	
M48x2	
M64x3	

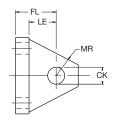
chape femelle (1)	support mâle (2)	axe d'articulation (3)	force nominale kN	poids kg
143447	144808	143477	10,3	0,3
143448	144809	143478	16,9	0,6
143449	144810	143479	26,4	0,8
143450	144811	143480	41,2	2,2
143451	144812	143480	65,5	2,7
143452	144813	143481	106	5,9
143453	144814	143482	165	9,2
143454	144815	143483	258	18
143455	144816	143484	422	27
143456	144817	143485	660	39


Dimensions axe d'articulation (3)

Code no.	
143477	
143478	
143479	
143480	
143481	
143482	
143483	
143484	
143485	

EK f8	EL min	poids kg
10	29	0,02
12	37	0,05
14	45	0,08
20	66	0,2
28	87	0,4
36	107	1,0
45	129	1,8
56	149	4,2
70	169	6,0


Dimensions chape femelle (1)



Code no.
143447
143448
143449
143450
143451
143452
143453
143454
143455
143456

AV	CE	CK H9	CL	CM A16	CR	ER	кк	LE min	poids kg
14	32	10	25	12	20	12	M10x1,25	13	0,08
16	36	12	32	16	32	17	M12x1,25	19	0,25
18	38	14	40	20	30	17	M14x1,5	19	0,32
22	54	20	60	30	50	29	M16x1,5	32	1,0
28	60	20	60	30	50	29	M20x1,5	32	1,1
36	75	28	83	40	60	34	M27x2	39	2,3
45	99	36	103	50	80	50	M33x2	54	2,6
56	113	45	123	60	102	53	M42x2	57	5,7
63	126	56	143	70	112	59	M48x2	63	7,8
85	168	70	163	80	146	78	M64x3	83	13

Dimensions support mâle (2)

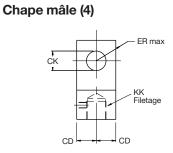
Code no.						
144808						
144809						
144810						
144811						
144812						
144813						
144814						
144815						
144816						
144817						

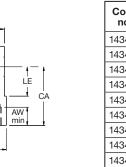
СК н9	EM h13	FL	MR max	LE min	AA	нв	TG	UD
10	12	23	12	13	40	5,5	28,3	40
12	16	29	17	19	47	6,6	33,2	45
14	20	29	17	19	59	9,0	41,7	65
20	30	48	29	32	74	13,5	52,3	75
20	30	48	29	32	91	13,5	64,3	90
28	40	59	34	39	117	17,5	82,7	115
36	50	79	50	54	137	17,5	96,9	130
45	60	87	53	57	178	26	125,9	165
56	70	103	59	63	219	30	154,9	205
70	80	132	78	82	269	33	190,2	240

Support mâle (2)

Alésage Ø
25
32
40
50
63
80
100
125
160
200

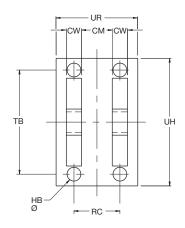
ooids kg
0,2
0,3
0,4
1,0
1,4
3,2
5,6
10,5
15
20

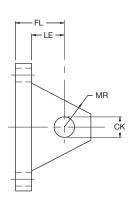



Chape mâle, support femelle et axe d'articulation

Filetage KK
M10x1,25
M12x1,25
M14x1,5
M16x1,5
M20x1,5
M27x2
M33x2
M42x2
M48x2
M64x3

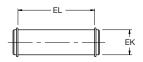
chape mâle (4)	support femelle (5)	axe d'articulation (3)	force nominale kN	poids kg
143457	143646	143477	10,3	0,5
143458	143647	143478	16,9	1,0
143459	143648	143479	26,4	1,3
143460	143649	143480	41,2	3,2
143461	143649	143480	65,5	3,8
143462	143650	143481	106	6,9
143463	143651	143482	165	12,5
143464	143652	143483	258	26
143465	143653	143484	422	47
143466	143654	143485	660	64


Dimensions chape mâle (4)



			-							
Code no.	AW	CA	СВ	CD	CK H9	EM h13	ER	кк	LE min	poids kg
143457	14	32	18	9	10	12	12	M10x1,25	13	0,08
143458	16	36	22	11	12	16	17	M12x1,25	19	0,15
143459	18	38	20	12,5	14	20	17	M14x1,5	19	0,22
143460	22	54	30	17,5	20	30	29	M16x1,5	32	0,5
143461	28	60	30	20	20	30	29	M20x1,5	32	1,1
143462	36	75	40	25	28	40	34	M27x2	39	1,5
143463	45	99	50	35	36	50	50	M33x2	54	2,5
143464	56	113	65	50	45	60	53	M42x2	57	4,2
143465	63	126	90	56	56	70	59	M48x2	63	11,8
143466	85	168	110	70	70	80	78	M64x3	83	17

Support femelle (5)



Dimensions support femelle (5)

Code no.
143646
143647
143648
143649
143650
143651
143652
143653
143654

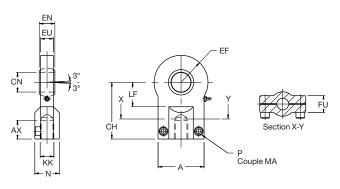
CK H9	CM A16	cw	FL	MR max	нв	LE min	RC	тв	UR min	UH
10	12	6	23	12	5,5	13	18	47	35	60
12	16	8	29	17	6,6	19	24	57	45	70
14	20	10	29	17	9	19	30	68	55	85
20	30	15	48	29	13,5	32	45	102	80	125
28	40	20	59	34	17,5	39	60	135	100	170
36	50	25	79	50	17,5	54	75	167	130	200
45	60	30	87	53	26	57	90	183	150	230
56	70	35	103	59	30	63	105	242	180	300
70	80	40	132	78	33	82	120	300	200	360

Dimensions axe d'articulation (3)

Code no.
143477
143478
143479
143480
143481
143482
143483
143484
143485

EK f8	EL min	poids kg
10	29	0,02
12	37	0,05
14	45	0,08
20	66	0,2
28	87	0,4
36	107	1,0
45	129	1,8
56	149	4,2
70	169	6,0

Support femelle (5)


	,			
support femelle (5)	force nominale kN	poids kg		
143646	10,3	0,4		
143647	16,9	0,8		
143648	26,4	1,0		
143649	41,2	2,5		
143649	65,5	2,5		
143650	106	5,0		
143651	165	9,0		
143652	258	20		
143653	422	31		
143654	660	41		

Tenon rotulé, support de montage et axe d'articulation

Filetage KK
M10x1,25
M12x1,25
M14x1,5
M16x1,5
M20x1,5
M27x2
M33x2
M42x2
M48x2
M64x3

		1		
tenon rotulé (6)	support de montage et axe d'articulation (7)	force nominale kN		
145254	145530	10,3		
145255	145531	16,9		
145256	145532	26,4		
145257	145533	41,2		
145258	145534	65,5		
145259	145535	106		
145260	145536	165		
145261	145537	258		
145262	145538	422		
145263	145539	660		

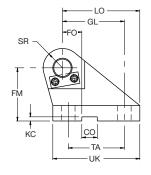
Tenon rotulé conforme à la norme ISO 8133/DIN 24 555

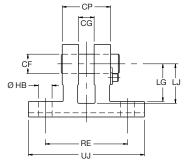
Dimensions tenon rotulé (6)

Code no.
145254
145255
145256
145257
145258
145259
145260
145261
145262
145263

A max	AX min	EF max	СН	CN	EN	EU	FU	KK	LF min	N max	MA max, Nm	Р	poids kg
40	15	20	42	12 -0,008	10 -0,12	8	13	M10x1,25	16	17	10	M6	0,7
45	17	22,5	48	16 -0,008	14 -0,12	11	13	M12x1,25	20	21	10	M6	1,3
55	19	27,5	58	20 -0,012	16 -0,12	13	17	M14x1,5	25	25	25	M8	2,3
62	23	32,5	68	25 -0,012	20 -0,12	17	17	M16x1,5	30	30	25	M8	3,7
80	29	40	85	30 -0,012	22 -0,12	19	19	M20x1,5	35	36	45	M10	6,5
90	37	50	105	40 -0,012	28 -0,12	23	23	M27x2	45	45	45	M10	11,6
105	46	62,5	130	50 -0,012	35 -0,12	30	30	M33x2	58	55	80	M12	23
134	57	80	150	60 -0,015	44 -0,15	38	38	M42x2	68	68	160	M16	46
156	64	102,5	185	80 -0,015	55 -0,15	47	47	M48x2	92	90	310	M20	95
190	86	120	240	100 -0,020	70 -0,20	57	57	M64x3	116	110	530	M24	168

Dimensions support de montage et axe d'articulation (7)


Code no.
145530
145531
145532
145533
145534
145535
145536
145537
145538
145539


CF	CG	СО		FM	FO	GL		кс		·		RE	SR	TA		
K7/h6	+0,1, +0,3	N9	CP	js11	js14	js13	НВ	0, +0,30	LG	LJ	LO	js13	max	js13	UJ	UK
12	10	10	30	40	16	46	9	3,3	28	29	56	55	12	40	75	60
16	14	16	40	50	18	61	11	4,3	37	38	74	70	16	55	95	80
20	16	16	50	55	20	64	14	4,3	39	40	80	85	20	58	120	90
25	20	25	60	65	22	78	16	5,4	48	49	98	100	25	70	140	110
30	22	25	70	85	24	97	18	5,4	62	63	120	115	30	90	160	135
40	28	36	80	100	24	123	22	8,4	72	73	148	135	40	120	190	170
50	35	36	100	125	35	155	30	8,4	90	92	190	170	50	145	240	215
60	44	50	120	150	35	187	39	11,4	108	110	225	200	60	185	270	260
80	55	50	160	190	35	255	45	11,4	140	142	295	240	80	260	320	340
100	70	63	200	210	35	285	48	12,4	150	152	335	300	100	300	400	400

Support de montage sur fond et axe d'articulation – pour style SBd (7)

Alésage Ø
25
32
40
50
63
80
100
125
160
200

support de montage et axe d'articulation	force nominale kN	poids kg
145530	10,3	0,6
145531	16,9	1,3
145532	26,4	2,1
145533	41,2	3,2
145534	65,5	6,5
145535	106	12
145536	165	23
145537	258	37
145538	422	79
145539	660	140

Sauf spécification contraire, toutes les dimensions sont en mm.

Brides

Les vérins avec montage par bride rectangulaire avant (style JJ) prévoient un centrage permettant le bon alignement du vérin sur l'equipement recepteur. Voir page 9. Le support de cartouche est solidaire de la tête pour les vérins d'alésages 25, 32 et 40 mm. Pour les vérins d'alésages 50 mm et supérieurs, le support de cartouche est boulonné dans la tête.


Tirants prolongés

En plus des autres formes de montage, des vérins avec tirants prolongés sont disponibles et vous pourrez utiliser également pour le montage d'autres systèmes ou des composants de l'installation. Un jeu supplémentaire d'écrous est fourni.

Pattes latérales et clavettes

Le moment de torsion dérivant de l'application de la force développée par un vérin avec montage par pattes pourra être limité par l'application de dispositifs de montage ainsi que par le guidage efficace de la charge. Pour permettre le montage mécanique du vérin, nous recommandons le montage modifié par clavette.

Les vérins de style C avec montage par pattes latérales et alésages 25 mm et 32 mm, voir page 9, sont proposés avec un montage par clavette sur le bord inférieur de la contre plaque spécialement prolongée de la cartouche. Pour passer commande, sélectionnez « P »dans le champ « Modification de montage » de la codification en page 29.

Alésage Ø		F nom.	FA -0,075	PA -0,2
25		10	8	5
32		10	8	5

Les vérins montés sur pattes avec un alésage de 40 mm utilisent une clavette séparée (fournie) installée entre des rainures usinées dans la patte côté tête et côté fond du vérin. Pour passer commande, sélectionnez « K » dans le champ « Modifications de montage » de la codification en page 29. La clavette fournie est conforme aux normes BS4235 / DIN6885 type B.

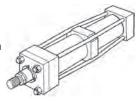
Alésage Ø	CO N9	KC min.	TP min.
40	12	4	55
50	12	4,5	70
63	16	4,5	80
80	16	5	105
100	16	6	120
125	20	6	155
160	32*	8	190
200	40	8	220

Clavette							
Largeur	Hauteur	Longueur	Code no.				
12	8	55	0941540040				
12	8	70	0941540050				
16	10	80	0941540063				
16	10	105	0941540080				
16	10	120	0941540100				
20	12	155	0941540125				
32	18	190	0941540160				
40	22	220	0941540200				

Non conforme à la norme ISO 6020/2

Ecrous de tirants

Les écrous de tirants avec filetages lubrifiés doivent avoir une résistance minimum de ISO 898/2 catégorie 10, et être serrés au couple, selon la table.


Boulon de montage

Pour fixer les vérins à la machine ou sur une base, Parker recommande l'utilisation de boulons de montage avec une longueur minimum ISO 898/1 catégorie 10,9. Les boulons de montage seront serrés au couple recommandé par le fabricant.

Alésage Ø	couple de tirants Nm
25	4,5 - 5,0
32	7,6 - 9,0
40	19,0 - 20,5
50	68 - 71
63	68 - 71
80	160 - 165
100	160 - 165
125	450 - 455
160	815 - 830
200	1140 - 1155
200	1140 - 1155

Supports des tirants

Pour augmenter la résistance au flambage en cas de vérin à longue course nous avons prévus des supports intermédiaires de tirants afin d'obtenir des courses plus longues que les normales sans nécessiter d'autres fixations.

nombre

de support

requis

llésage	course (en mètres)											
Ø	0,9	1,2	1,5	1,8	2,1	2,4	2,7	3,0	3,3	3,6	3,9	4,2
25	1	1	2									
32	-	1	1	2			veuil	lez n	ous	cons	ulter	
40	-	-	1	1	1	2	2					
50	-	-	-	1	1	1	1	2	2	2	2	3
63	-	-	-	-	-	1	1	1	1	1	2	2
80	-	-	-	-	-	-	-	1	1	1	1	1
100	-	-	-	-	-	-	-	-	-	1	1	1

Courses maximums sans support

Alés Ø	
2	5
3	2
4	0
5	0
6	3
8	0
10	00
12	25
16	0
20	00

type de montage intermédiaire	type de montage sur l'extrémité
1500	1000
2000	1500
3000	2000
3500	2500

Tolérances de course

Les tolérances de production standard sont $0 \ a + 2 \ mm$ pour tous les alésages et les longueurs de course. Pour des tolérances inférieures, veuillez spécifier la tolérance requise, ainsi que la pression de service et la température du fluide. Le tableau suivant défini les tolérances en fonction de la longueur de la course.

		Aaléwanaaa nawu daa
Forme de montage	Cotes	tolérances pour des courses jusqu'à 3 m
Tous des montages -	Υ	±2
dimensiones d'orifices	PJ	±1,25
JJ (ME5)	ZB	max.
HH (ME6)	ZJ	±1
BB (MP1) B (MP3)	XC	±1,25
SBd (MP5)	XO	±1,25
C (MS2)	XS ZB SS	±2 max. ±1,25
D (MT1)	XG ZB	±2 max.
DB (MT2)	XJ ZB	±1,25 max.
DD (MT4)	X1 ZB	±2 max.
TD (MX1) TC (MX2) TB (MX3)	BB	+3 0
TB (MX3) TE * (MX5)	ZB	max.
TD (MX1) TB (MX3) TE * (MX5)	WH	±2
TD (MX1) TC (MX2) TB (MX3) TE * (MX5)	ZJ	±1

^{*} NFE seulement - voir à la page 7

inPHorm

Pour de plus amples informations sur les calculs relatifs à la taille d'alésage de vérin requise, veuillez vous reporter au programme européen de sélection des vérins inPHorm HY07-1260/Eur.

Calcul du diamètre du vérin

Forces de poussée

Si la tige du piston travaille en poussée, faire référence au tableau suivant des "Forces de Poussée".

- 1. Identifier la pression de service la plus proche de celle requise.
- 2. Dans la même colonne, identifier la force requise pour déplacer la charge (toujours en arrondissant au chiffre supérieur).
- 3. Vérifier, dans la même ligne, l'alésage prévu pour le vérin. Au cas où l'enveloppe du vérin serait excessive pour l'application en cours, augmenter la pression de service, si possible, et répéter l'exercice.

Forces de poussée

Alésage Ø	Surface du piston
	mm²
25	491
32	804
40	1257
50	1964
63	3118
80	5027
100	7855
125	12272
160	20106
200	31416

	Force de pousée du vérin en kN								
10 bar	40 bar	63 bar	100 bar	125 bar	160 bar	210 bar			
0,5	2,0	3,1	4,9	6,1	7,9	10,3			
0,8	3,2	5,1	8,0	10,1	12,9	17			
1,3	5,0	7,9	12,6	15,7	20	26			
2,0	7,9	12,4	20	25	31	41			
3,1	12,5	20	31	39	50	65			
5,0	20	32	50	63	80	106			
7,9	31	50	79	98	126	165			
12,3	49	77	123	153	196	258			
20	80	127	201	251	322	422			
31	126	198	314	393	503	660			

Forces de traction

- 1. Suivre la procédure décrite ci-dessus pour les applications "en poussée".
- Identifier, en consultant le tableau des forces de "traction", la force prévue sur la base de la tige et des valeurs de pression choisies.
- Soustraire la valeur obtenue de la force de "poussée": la valeur obtenue de ce fait sera la force nette disponible pour déplacer la charge.

Au cas où cette force serait insuffisante, répéter la procédure en augmentant, si possible, la pression de service du système ou le diamètre du vérin. En cas de doute, consulter nos techniciens de conception qui seront heureux d'être à votre service.

Réductions pour les forces de traction

Tige	Surface		Réduction de la force en kN							
ø	tige mm²	10 bar	40 bar	63 bar	100 bar	125 bar	160 bar	210 bar		
12	113	0,1	0,5	0,7	1,1	1,4	1,8	2,4		
14	154	0,2	0,6	1,0	1,5	1,9	2,5	3,2		
18	255	0,3	1,0	1,6	2,6	3,2	4,1	5,4		
22	380	0,4	1,5	2,4	3,8	4,8	6,1	8,0		
28	616	0,6	2,5	3,9	6,2	7,7	9,9	13		
36	1018	1,0	4,1	6,4	10,2	12,7	16,3	22		
45	1591	1,6	6,4	10,0	16	20	26	34		
56	2463	2,5	9,9	15,6	25	31	39	52		
70	3849	3,8	15,4	24	39	48	62	81		
90	6363	6,4	25	40	64	80	102	134		
110	9505	9,5	38	60	95	119	152	200		
140	15396	15,4	62	97	154	193	246	323		

Gammes HMI/HMD

Sélection des dimensions des tiges

Pour sélectionner la tige d'un vérin travaillant en poussée, procéder comme suit:

- Déterminer la forme de montage et le mode de fixation de l'extrémité de la tige qu'il faudra utiliser. Consulter ensuite le tableau ci-dessous à obtenir le facteur de course correspondant à l'application souhaitée.
- 2. Grâce à ce facteur de course, déterminer la "longueur de base" avec l'équation suivante:

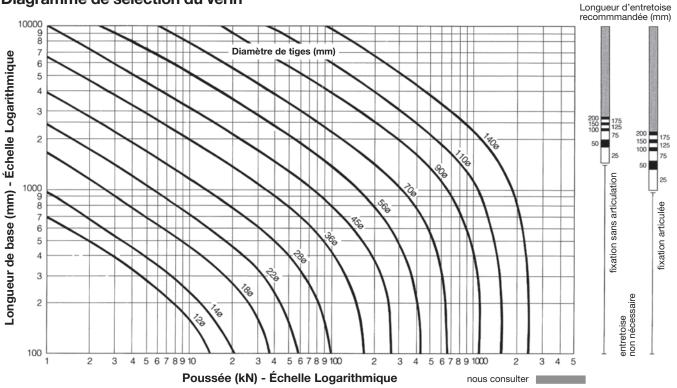
Longueur de base = course réelle x facteur de course (Le diagramme est utilisable pour des tiges de dépassement standard au-delà de la face du support de cartouche. Pour les tiges ayant une surlongueur, ajouter cette surlongueur à la course afin d'obtenir la "longueur de base".)

 Déterminer la force de poussée du vérin en multipliant la surface du piston du vérin par la pression de travail du système, ou en consultant le diagramme des forces de poussée et de traction à la page 17. 4. Porter sur le diagramme ci-dessous les valeurs "longueur de base" et "force de poussée" obtenues précédemment au point 2 et 3 et noter leur point d'intersection.

La dimension de tige recommandée se trouve notée sur la courbe, juste **au-dessus** du point d'intersection.

Pour des charges en tension (tirant), la taille de la tige se sélectionne en spécifiant des vérins standard, avec des diamètres de tige standard et en les utilisant à la pression nominale ou en dessous.

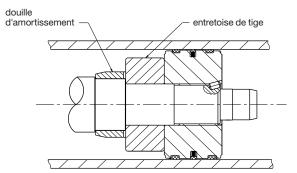
inPHorm


Pour de plus amples informations sur les calculs relatifs à la taille d'alésage de vérin requise, veuillez vous reporter au programme européen de sélection des vérins inPHorm HY07-1260/Eur.

Facteurs de course

Liaison à l'extrémité de la tige	Forme de montage	Montage	Facteur de course
Fixe et guidé rigidement	TB, TD, JJ, C TE (NFE seulement)		0,5
Articulé et guidé rigidement	TB, TD, JJ, C TE (NFE seulement)		0,7
Fixe et guidé rigidement	TC, HH		1,0
Articulé et guidé rigidement	D		1,0
Articulé et guidé rigidement	TC, HH, DD		1,5
Supporté mais non guidé rigidement	TB, TD, JJ, C TE (NFE seulement)		2,0
Articulé et guidé rigidement	B, BB, DB, SBd		2,0
Supporté mais non guidé rigidement	TC, HH		4,0
Supporté mais non guidé rigidement	B, BB, DB, SBd		4,0

Diagramme de sélection du vérin



Vérins à longue course et entretoises de tige

La longueur d'entretoise de tige nécessaire se lit sur les colonnes verticales sur la droite du diagramme, en suivant la zone ombrée dans laquelle se trouve le point d'intersection. Remarquer que les conditions requises pour les entretoises dépendent de la forme de montage de vérin, fixe ou articulée. Lorsque l'indication d'entretoise tombe dans la partie "Nous consulter", nous soumettre les renseignements suivants pour une analyse individuelle:

- 1. Forme de montage
- Mode de fixation de l'extrémité de la tige et méthode de guidage de la charge.
- 3. Alésage requis, course envisagée, surlongueur de la tige (cote WF VE), si dépassant les dimensions standard.
- 4. Position de montage du vérin (Attention: si le vérin est vertical ou incliné, indiquer la direction de la tige.)
- 5. Pression de service du vérin, si elle est inférieure à la pression nominale prévue pour le vérin sélectionné.

Lorsque vous spécifiez un vérin avec une entretoise de tige, veuillez insérer la lettre "S" (spécial) ainsi que la course nette du vérin dans le numéro de modèle et mentionner la longue d'entretoise. Noter que la course nette est égale à la course brute du vérin minorée de la longueur d'entretoise.

Gammes HMI/HMD

Introduction à l'amortissement

L'amortissement est recommandé comme moyen de contrôle de la décélération des masses ou pour des applications dont les vitesses de pistons dépassent 0,1 m/s, à course de vérin complète. L'amortissement rallonge la durée de vie du vérin, diminue le bruit et le choc hydraulique. Les dispositifs de décéleration ou "amortisseurs" sont des options montées en tête et fond de vérin sans modification des dimensions d'enveloppe ou de fixation.

Amortissement standard

Afin de satisfaire aux besoins des différentes applications, les vérins HMI et HMD sont dotés en exécution standard d'amortisseurs profilés. La vitesse finale pourra être réglée en agissant sur les vis d'amortissement prévues à cet effet. La performance de ce type d'amortisseur est indiquée dans le tableau à la page 21 ainsi que l'amortissement caractéristique correspondant à chacune des dimensions de tige disponibles.

A remarquer que l'action d'amortissement changera en cas d'utilisation à l'eau ou d'autres fluides à haute teneur en eau comme fluides hydrauliques. Pour plus de détails, veuillez nous consulter.

Autres amortisseurs

Pour compléter la gamme des amortisseurs profilés standard, on pourra concevoir et réaliser des amortisseurs destinés à des applications spéciales où l'énergie cinétique absorbée dépasse les valeurs standard. Veuillez nous consulter pour la réalisation d'amortisseurs spéciaux.

Longueurs d'amortissement

Tous les amortisseurs sont réglables et dotés de douille et de plongeur d'amortissement sans modification des enveloppes standards et sans réduction des longueurs de guidage de cartouche et de piston. Voir page 22 pour longueur des amortisseurs.

Calculs d'amortissement

Les diagrammes à la page 21 indiquent la capacité d'absorption d'énergie pour chaque combinaison alésage/tige de tête (annulaire) et de fond (alésage total) du vérin. Les diagrammes indiquent une gamme de vitesses du piston de 0,1 à 0,3 m/s. Pour les vitesses de 0,3 a 0,5 m/s réduire de 25% les valeurs d'absorption d'énergie du tableau.

En cas de vitesses inférieures à 0,1 m/s en présence de masses importantes et pour des vitesses supérieures à 0,5 m/s, un amortisseur à profil spécial peut s'avérer nécessaire. Dans ce cas, veuillez nous contacter.

La capacité d'amortissement du côté tête est inférieure à celle du côté fond, et devient zéro aux hautes pressions de commande. La capacité d'absorption de l'énergie diminue en fonction de la pression de commande, correspondant dans les circuits ordinaires à la valeur de pression du clapet anti-retour.

inPHorm

Les caractéristiques d'amortissement peuvent être calculées automatiquement pour chaque configuration vérin/charge en utilisant le programme européen de sélection des vérins inPHorm HY07-1260/Eur.

Formules

Pour les installations en horizontal les calculs d'amortissement se basent sur la formule qui suit: $E = \frac{1}{2}mv^2$.

Pour les installations verticales ou inclinées soit vers le bas soit vers le haut la formule devient:

 $E = \frac{1}{2}mv^2 + mgl \times 10^{-3} \times sin\alpha$

(installation inclinée/verticale vers le bas)

 $E=1/_{2}mv^{2}$ - $mgl~x~10^{-3}~x~sin\alpha$

(installation inclinée/verticale vers le haut)

Où:

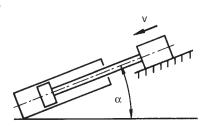
E = énergie absorbée en Joules

g = accélération par gravité = 9,81 m/s²

v = vitesse en mètres/seconde

I = longueur de la course d'amortissement en mm

m = masse de la charge en kg (y compris les masses du piston et de la tige, et des accessoires d'extrémité de tige, voir pages 13-15 et 22)


 α = degré d'inclinaison par rapport au plan horizontal

p = pression en bar

Exemple

L'exemple ci-dessous montre comment calculer l'énergie cinétique développée par des masses en mouvement suivant un axe. Pour tout déplacement non linéaire d'autres calculs sont nécessaires: dans ce cas,

veuillez nous consulter. Cet exemple suppose que le diamètre d'alésage et de la tige conviennent déjà à l'application. Tout effet du frottement sur le vérin et sur la charge a été ignoré.

Alésage/tige sélectionné(e): 160/70 mm (tige no.1) Amortissement coté fond

 $\begin{array}{lll} \text{pression} = & 160 \text{ bar} \\ \text{masse} = & 10000 \text{ kg} \\ \text{vitesse} = & 0,4 \text{ m/s} \\ \alpha = & 45^{\circ} \\ \sin \alpha = & 0,70 \\ \text{longueur d'amortisseur} = & 41 \text{ mm} \end{array}$

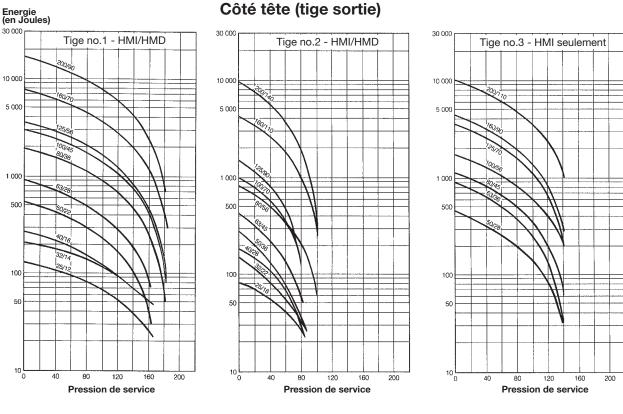
 $E = \frac{1}{2}mv^2 + mgl \times 10^{-3} \times sin\alpha$

$$= \frac{10000 \times 0.4^{2} + 10000 \times 9.81 \times 41 \times 0.70}{2} \times 10000 \times 100000 \times 100000 \times 100000 \times 100000 \times 100000 \times 10000 \times 10000 \times 10000 \times 10000 \times 10000 \times 10000 \times 10$$

= 800 + 2815 = 3615 Joules

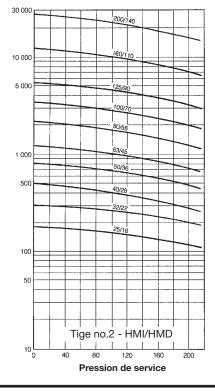
Nota: La vitesse dépasse 0,3 m/s, et il faut donc ajouter aux courbes du diagramme d'amortissement un coefficient de réduction de 0,75. En appliquant ce facteur à la valeur d'énergie calculée en 3615 Joules on obtient une valeur correcte d'énergie à:

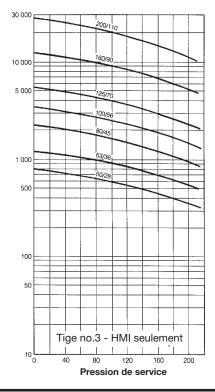
$$\frac{3615}{0.75}$$
 = 4820 Joules


Cette comparaison sur la courbe indique que l'amortisseur peut décelérer en toute sécurité la charge. Si l'énergie calculée devait dépasser la valeur indiquée par la courbe, sélectionner un vérin ayant un alésage supérieur et répéter les calculs.

Données d'absorption de l'énergie cinétique de l'amortisseur

Les données d'absorption de l'énergie cinétique ci-dessous se rapportent à des conditions de pression maximum sans fatigue


développées dans la chambre du vérin. Si des cycles de fonctionnement inférieurs à 10⁶ sont nécessaires, de plus grandes capacités d'amortissement pourront être utilisées. Pour plus de détails, veuillez consulter l'usine.



Energie (en Joules) 30 000 10 000 18070 5 000 125/66 1000 5 000 125/66 1000 5 000 175/6 1000 5 000 175/6 1000 5 002 5 002 5 002 5 002 1000 Tige no.1 - HMI/HMD 1000 400 800 120 1800 2000

Pression de service

Côté fond (tige rentrée)

Vérins à tirants **Gammes HMI/HMD**

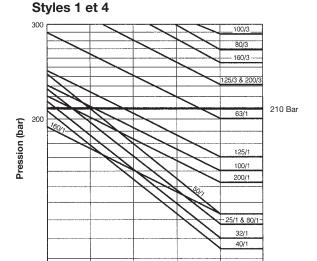
Longueur d'amortissement, masse tige et piston

Alésage Ø	Tige no.	Tige Ø
25	1	12
	2	18
32	1	14
	2	22
40	1	18
10	2	28
	1	22
50	2	36
	3	28
	1	28
63	2	45
	3	36
	1	36
80	2	56
80	3	45
	1	45
100	2	70
	3	56
	1	56
125	2	90
	3	70
	1	70
160	2	110
	3	90
	1	90
200	2	140
	3	110

Longue	ur d'amortis	- seulen	nent ISO		
Tige	no.1	Tige	no.2	Tige	no.3
Tête	Fond	Tête	Fond	Tête	Fond
22	20	24	20	-	-
24	20	24	20	_	-
29	29	29	30	_	_
29	29	29	29	29	29
29	29	29	29	29	29
35	32	27	32	35	32
35	32	26	32	29	32
28	32	27	32	27	32
34	41	34	41	34	41
46	56	49	56	50	56

Piston et tige à course zéro kg	Tige seulement pour course 10 mm kg					
0,12	0,01					
0,16	0,02					
0,23	0,01					
0,30	0,03					
0,44	0,02					
0,60	0,05					
0,70	0,03					
0,95	0,08					
0,80	0,05					
1,20	0,05					
1,60	0,12					
1,35	0,08					
2,30	0,08					
2,90	0,19					
2,50	0,12					
4,00	0,12					
5,10	0,30					
4,40	0,19					
7,10	0,19					
9,40	0,50					
8,00	0,30					
13,70	0,30					
17,20	0,75					
15,30	0,50					
27,00	0,50					
34,00	1,20					
30,00	0,75					

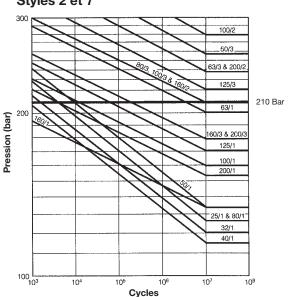
Limites de pression – charges de poussée et de traction


Tiges (charges de poussée)

En présence de charges de poussée, avec la tige en compression et les accessoires en butée sur l'épaulement, toute situation de fatigue est évitée sur les extrémités de tige à deux côtés. Compte tenu de la réduction de surface d'épaulement sur les extrémités de tige à quatre côtés, les tiges de piston de diamètre 12 mm et 14 mm à quatre méplats ne doivent pas être soumis à une pression de service supérieure à 160 bar – voir Méplats d'extrémité de tige, page 6.

Tiges (charges de traction)

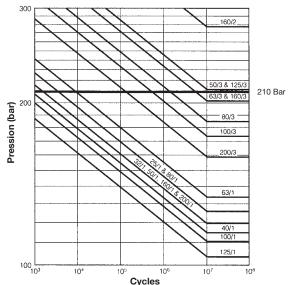
Dans les applications avec des charges de traction, les filetages entre piston et tige pourront être soumis à des variations de


Durée de fatigue des ensembles tige/extrémité de tige (en traction)

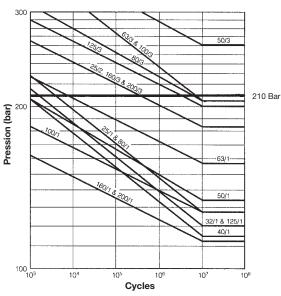
Cycles

Styles 2 et 7

100 103


pleine charge. C'est dans ces conditions que les ruptures de fatigue peuvent se produire. La plupart des tiges disponibles résiste à la fatigue jusqu'à une pression de 210 bar. Les diagrammes ci-dessous montrent les profils de la durée de fatigue des tiges affectées par la fatigue à une pression nominale de 210 bar ou inférieure.

Vérins à double tige


A cause de la configuration du montage, en cas de vérin à double tige, une des tiges est inévitablement plus faible que l'autre, voir page 12. La tige la plus forte sera identifiée par la lettre "K" marquée à son extrémité et ses limites de pression équivalent à celles figurant aux diagrammes pour la version à simple tige. Le diagramme pour le vérin à double tige styles 1 et 4, se rapporte uniquement à la tige la plus faible.

Remarques: Les courbes ci-dessous sont établies suivant les alésages et nombre de tiges. Ex: 100/3 concerne un vérin d'alésage 100 mm avec tige no.3.

Styles 5 et 9

Styles 1 et 4 à double tige

Orifices

Les vérins de série HMI & HMD sont livrés en standard avec des orifices de type BSP à filetage parallèle. Les vérins HMI sont également disponibles avec des orifices métriques conformes aux normes DIN 3852, partie 1 et ISO 6149. Les orifices filetés prévoient un lamage destiné à recevoir les joints d'étancheité.

Vérins avec alésages 25 mm et 32 mm

L'épaisseur de la tête est augmentée de 5 mm afin de disposer de toute la longueur de filetage côté fond. Sur les vérins d'alésage 25 mm et 32 mm, montage JJ avec orifices en positions 2 ou 4, l'épaisseur de la tête E est augmentée de 5 mm en position 1. Des bossages de 20 mm sont montés du côté du fon du vérin.

A remarquer que les cotes Y et PJ peuvent varier légèrement en cas d'orifices surdimensionnés – veuillez nous consulter en cas de dimensions critiques.

Les tableaux ci-contre permettent de définir si les orifices standard conviennent à l'application envisagée. Les données indiquent les vitesses du piston pour les orifices standard et surdimensionnés, ainsi que les tuyauteries à une vitesse d'écoulement de 5 m/s. Si la vitesse du piston désirée amène à une vitesse d'écoulement supérieure à 5 m/s, il est conseillé d'utiliser des tuyauteries ayant un diamètre plus grand et de prévoir deux orifices par embase. Parker recommande que le débit en passage des tuyauteries de connexion ne dépasse pas 12 m/s.

Limites de vitesse

En cas de masses importantes ou de vitesse de piston supérieure à 0,1 m/s et si le vérin doit effectuer une course complete, veuillez vous reporter à la page 20. Pour des vérins utilisant des orifices surdimensionnés avec des debits dans les orifices excedant 8 m/s en fond de vérin, veuillez nous consulter.

Position des orifices et vis de réglage d'amortissement

Le tableau ci-dessous précise les positions standards des orifices d'alimentation ainsi que des vis de réglage d'amortissement. Pour les vérins jusqu'à 125 mm d'alésage, un adapteur de type en cartouche sera utilisé et depassera de la face du vérin de 3 mm pour alésages de 25 mm et 32 mm. Pour les alésages de 125 mm et supérieur un adapteur de type ajustable sera utilisé.

		Orifices standard vérins										
Alésage Ø			métriques 1	Alésages des tubes de connexion	Débit sur fond en I/min @ 5 m/s	Vitesse piston m/s						
25		G1/4	M14x1,5	7	11,5	0,39						
32		G ¹ / ₄	M14x1,5	7	11,5	0,24						
40		G ³ / ₈	M18x1,5	10	23,5	0,31						
50		G ¹ / ₂	M22x1,5	13	40	0,34						
63		G1/2	M22x1,5	13	40	0,21						
80		G ³ / ₄	M27x2	15	53	0,18						
100	Г	G ³ / ₄	M27x2	15	53	0,11						
125		G1	M33x2	19	85	0,12						
160		G1	M33x2	19	85	0,07						
200		G1 ¹ / ₄	M42x2	24	136	0,07						

		Orifices surdimensionnés vérins – non conforme NFE									
Alésage Ø			métriques	Alésages des tubes de connexion	Débit sur fond en I/min @ 5 m/s	Vitesse piston m/s					
25		G ³ / ₈ ²	M18x1,5 2,3	10	23,5	0,80					
32		G ³ /8 ²	M18x1,5 2,3	10	23,5	0,48					
40		G ¹ / ₂	M22x1,5 ³	13	40	0,53					
50		G ³ / ₄	M27x2 ³	15	53	0,45					
63		G ³ / ₄	M27x2 ³	15	53	0,28					
80 4		G1	M33x2	19	85	0,28					
100 4		G1	M33x2	19	85	0,18					
125 4		G1 ¹ / ₄	M42x2	24	136	0,18					
160 4		G11/4	M42x2	24	136	0,11					
200 4		G1 ¹ / ₂	M48x2	30	212	0,11					

- ¹ Non conforme NFE 48.016
- ² La hauteur des bossages sera de 20 mm du côté du fond
- 3 Les orifices conformes à la norme ISO 6149 ne sont pas disponibles sur certaines combinaisons d'alésages et de tiges.
- ⁴ Consulter l'usine disponible pour certains alésages uniquement. Déconseillé pour montage style JJ à des pressions supérieures à 100 bar.

du vérin	des orifices et des vis de l'amortisseur					
Tête	Orifice					
rete	Amortisseur					
Fam.d	Orifice					
Fond	Fond Amortisseur					

												Forme	e de	m	onta	age	- IS	60 e	t N	FE												
	3, T E –				J	J 5			Н	Н		C 6		B et	BE	3		SE	3d			ı)			D	В			D	D	
1	2	3	4	1	2	3	4	1	2	3	4	1	1	2	3	4	1	2	3	4	-	1	(3	1	2	3	4	1	2	3	4
2	3	4	1	3	3	1	1	3	4	1	2	2	2	3	4	1	2	3	4	1	3	3		1	3	4	1	2	3	4	1	2
1	2	3	4	1	2	3	4	1	2	3	4	1	1	2	3	4	1	2	3	4	1	2	3	4	1	1	3	3	1	2	3	4
2	3	4	1	3	4	1	2	3	3	1	1	2	2	3	4	1	2	3	4	1	3	4	1	2	3	3	-	1	3	4	1	2

⁵ Les positions des orifices avec montage JJ sont valables pour tous les vérins HMI ainsi que pour les vérins HMD d'alésages compris entre 125 et 200 mm. Pour les vérins HMD d'alésages inférieurs ou égaux à 100 mm, les orifices pourront être localisés seulement en position 1 et 3, les vis de reglage d'amortisseurs étant situées sur la face opposée.

⁶ Des orifices en positions 2 et 4 peuvent être montés, mais ils seront décentrés. Pour les vérins de diamètre 25 mm et 32 mm, les orifices ne sont disponibles qu'avec la tige No. 1.

Joints et fluides, poids

Caractéristiques des joints et des fluides hydrauliques

Classe	Matériaux/Composition	Fluide conforme à la norme ISO 6743/4-1982	Plage température
1	Nitrile (NBR), PTFE, polyamide, polyuréthane renforcé (AU)	Huile minérale HH, HL, HLP, HLP-D, HM, HV, huile MIL-H-5606, air, azote	de -20°C à +80°C
2	Nitrile (NBR), PTFE, polyamide	Eau-glycols (HFC)	de -20°C à +60°C
5	Elastomères à base de fluorocarbone, PTFE, polyamide	Fluides ignifuges à base de phosphate-ester (HFD-R) Convient en outre pour huile hydraulique haute température mais non à l'emploi avec Skydrol. Voir les préconisations du fabriquant du fluide.	de -20°C à +150°C
6	Compositions diverses avec nitrile, polyamide, polyuréthane, renforcé	' Γ	
7	elastomère à base de fluorocarbone et PTFE	Emulsion eau en l'huile à 60/40 (HFB)	de +5°C à +60°C

Joints spéciaux

Des joints spéciaux sont disponibles outre la gamme indiquée ci-dessus. Dans ce cas, veuillez indiquer la lettre S (Spécial) sur le code de commande et mentionner le type de fluide hydraulique.

Joints à faible friction

Pour des applications nécessitant de faible friction ou la maîtrise d'effet "Stick-Slip", des joints à faible friction sont disponibles, voir page 5.

Service à l'eau

Pour utilisation en service à l'eau, nous pouvons également livrer des vérins modifiés incluant tige en inox, piston avec joints à lêvres, et chromage intérieur des pièces de vérin. Veuillez préciser en cas de commande, la pression maximum de service, la masse attelée et la vitesse de déplacement. Les tiges en inox ayant une résistance à la fatigue inférieure aux tiges standards.

Parker Hannifin garantit les vérins modifiés pour service à l'eau ou pour fluides à haute teneur en eau, contre tout défaut de matière et de fabrication en déclinant toute responsabilité d'un dommage causé par la corrosion, l'électrolyse ou le dépôt de calcaires dans le vérin.

Poids séries HMI et HMD

		Formes	de mo	ntage -	poids à	cours	e zéro	Poids
Alésage Ø	Tige Ø	TB, TC, TD, TE*	C kg	JJ, HH	B, BB, SBd kg	D, DB kg	DD kg	pour 10 mm de course kg
25	12	1,2	1,4	1,5	1,4	1,3	1,5	0,05
25	18	1,2	1,4	1,5	1,4	1,3	1,6	0,06
32	14	1,6	1,9	2,0	1,9	1,7	2,0	0,06
52	22	1,7	1,5	2,0	1,9	1,7	2,0	0,08
40	18	3,7	4,0	4,7	4,2	3,9	4,6	0,09
100	28	3,8	4,1	4,8	4,3	4,0	4,7	0,12
	22	5,9	6,5	7,2	7,0	6,3	7,9	0,14
50	36	6,0	6,6	7,3	7,1	0,0	8,0	0,18
	28	0,0	0,0	7,0	7,2	6,4	0,0	0,16
	28	8,5	9,7			8,9		0,19
63	45	8,6	9,8	10	10	9,0	11	0,27
	36	8,7	9,9			9,1		0,22
	36							0,27
80	56	16	18	19	20	17	21	0,39
	45							0,32
	45	22	24	25	28		26	0,40
100	70		24	26	20	23	27	0,58
	56	23	25	20	29		21	0,47
	56	42	44	48	53	43	48	0,65
125	90	72	45		54	40	49	0,95
	70	43	73	49	54	44	50	0,76
	70	69	73	78	90	71	84	1,0
160	110	03	73	70	91	72	85	1,4
	90	70	74	79	92	12	00	1,2
	90	122	129	138	157	127	153	1,5
200	140	123	130	130	158	128	133	2,3
	110	124	131	140	160	129	155	1,8

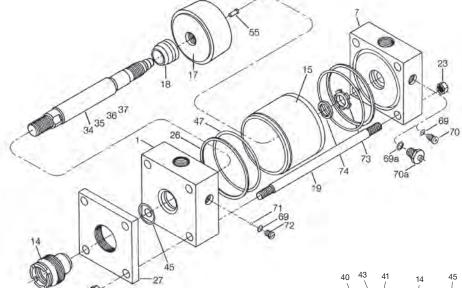
^{*} NFE seulement - voir à la page 7

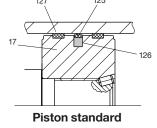
Le poids des accessoires sont rappelés à partir de la page 13.

Gammes HMI/HMD

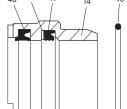
Pièces detachées et jeux de joints

Pour toute commande, veuillez rappeler le libellé de la plague d'identification fixée sur le vérin, et specifiez ce qui suit:

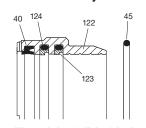

Numéro dé série – alésage – course – numéro de modèle – nature du fluide utilisé

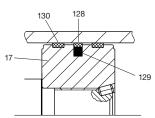

Légende des repères

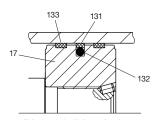
- 1 Tête
- 7 Fond
- 14 Cartouche/support de cartouche
- 15 Corps du vérin
- 17 Piston
- 18 Douille d'amortisseur
- 19 Tirant
- 23 Ecrou tirant
- 26 Contre-joint de corps (sauf les vérins d'alésage de 25-50 mm)
- 27 Contre-plaque
- 34 Tige de piston simple tige version non amortie
- 35 Tige de piston simple tige version amortie en tête
- 36 Tige de piston simple tige version amortie sur fond
- 37 Tige de piston simple tige version amortie sur tête et fond
- 40 Joint racleur de tige pour 14 et 122
- 41 Joint d'étainchéité à lèvre pour 14


- 74 Circlip pour bague flottante d'amortisseur
- 122 Cartouche faible friction
- 123 Joint racleur rep 122
- 124 Bague de précontrainte pour joint racleur 123
- 125 Joint de piston standard
- 126 Joint de compensation pour le joint standard 125
- 127 Porteur pour piston standard
- 128 Joint de piston LoadMaster
- 129 Joint de compensation pour le joint LoadMaster 128
- 130 Porteur pour piston LoadMaster
- 131 Joint de piston à faible friction
- 132 Joint de compensation pour le joint à faible friction 131
- 133 Porteur pour le piston à faible friction
- ¹ Ne paraît pas dans la figure
- Voir aux pages 12, résistance vérins à double tige

Tige Ø	Douille de démontage de cartouche d'étanchéité	Clé de démontage de cartouche d'étanchéité
12	69590	11676
14	69590	11676
18	84765	11676
22	69591	11676
28	84766	11703
36	69592	11703
45	69593	11677
56	69595	11677
70	69596	11677
90	84768	11677
110	_	_
140	_	_




- 43 Contre-joint, pour joint à lèvre 41 (joint Classe 5)
- 45 Joint torique cartouche/côté tête
- 47 Joint torique de corps
- 55 Clavette piston/tige
- 571 Tige double tige (plus robuste²), version non amortie
- 581 Tige double tige (plus robuste²), version amortie d'un côté
- 60¹ Tige double tige (plus faible²), version non amortie
- 611 Tige double tige (plus faible²), version amortie d'un côté
- 69 Joint torique pointeau et vis clapet AR
- 69a Joint torique ensemble pointeau de type à cartouche
- 70 Pointeau de réglage d'amortisseur
- 70a Ensemble pointeau de type à cartouche
- 71 Bille de clapet AR d'amortisseur (vérin diamètre supérieure à 100 mm)
- 72 Vis de clapet AR pour réglage amortisseur (vérin diamètre supérieure à 100 mm)
- 73 Bague flottante d'amortisseur


Cartouche et joints

Douille et joint faible friction

Piston LoadMaster

Piston faible friction

Ensembles de rechange et entretien

Vérins à tirants

Gammes HMI/HMD

Jeux de rechange pour piston et cartouche

(voir légende pour le numéro de repère à la page précédente)

Jeu de rechange cartouche, joints standard Repères 14, 40, 41, 43, 45. Si la cartouche incorpore un drain, veuillez nous consulter.

Jeu de joints de rechange cartouche, joints standard Repères 40, 41, 43, 45.

Jeu de rechange cartouche, joints à faible friction Repères 122, 40 et 45 plus deux pièces 123 et 124.

Jeu de joints de rechange cartouche, joints à faible friction Repères 40 et 45 plus deux 123 et deux 124.

Tige Ø	Jeu de rechange cartouche, joints standard*	Jeu de joints de rechange cartouche, joints standard*	Jeu de rechange cartouche, joints à faible friction*	Jeu de joints de rechange cartouche, joints à faible friction*
12	RG2HM0121	RK2HM0121	RG2HMF0121	RK2HMF0121
14	RG2HM0141	RK2HM0141	RG2HMF0141	RK2HMF0141
18	RG2HM0181	RK2HM0181	RG2HMF0181	RK2HMF0181
22	RG2HM0221	RK2HM0221	RG2HMF0221	RK2HMF0221
28	RG2HM0281	RK2HM0281	RG2HMF0281	RK2HMF0281
36	RG2HM0361	RK2HM0361	RG2HMF0361	RK2HMF0361
45	RG2HM0451	RK2HM0451	RG2HMF0451	RK2HMF0451
56	RG2HM0561	RK2HM0561	RG2HMF0561	RK2HMF0561
70	RG2HM0701	RK2HM0701	RG2HMF0701	RK2HMF0701
90	RG2HM0901	RK2HM0901	RG2HMF0901	RK2HMF0901
110	RG2HM1101	RK2HM1101	RG2HMF1101	RK2HMF1101
140	RG2HM1401	RK2HM1401	RG2HMF1401	RK2HMF1401

Jeu de rechange piston, joints standard Repères deux pièces 26 (sauf pour les vérins d'alésage 25-50 mm) et deux pièces 47 et 127, plus une pièce 125 et 126.

Jeu de rechange piston, joints LoadMaster Repères deux pièces 26 (sauf pour les vérins d'alésage 25-50 mm) et deux pièces 47 et 130, plus une pièce 128 et 129.

Jeu de rechange piston, joints à faible friction Repères deux pièces 26 (sauf pour les vérins d'alésage 25-50 mm) et deux pièces 47 et 133, plus une pièce 131 et 132.

Alésage Ø	Jeu de rechange piston, joints standard*	Jeu de rechange piston, joints LoadMaster*	Jeu de rechange piston, joints à faible friction*
25	PN025HM001	PZ025HM001	PF025HM001
32	PN032HM001	PZ032HM001	PF032HM001
40	PN040HM001	PZ040HM001	PF040HM001
50	PN050HM001	PZ050HM001	PF050HM001
63	PN063HM001	PZ063HM001	PF063HM001
80	PN080HM001	PZ080HM001	PF080HM001
100	PN100HM001	PZ100HM001	PF100HM001
125	PN125HM001	PZ125HM001	PF125HM001
160	PN160HM001	PZ160HM001	PF160HM001
200	PN200HM001	PZ200HM001	PF200HM001

de chaque code. Pour les joints de Classe 2, 5, 6 ou 7, il suffira de remplacer le numéro 1 à la fin de la séquence numérique par le chiffre correspondant "2", "5", "6" ou "7".

Jeux de rechange ensembles de service

(voir la légende ci-contre pour les numéros de repère)

Ensemble têtes

Non amorties: 1, 26, 47

Amorties: 1, 26, 47, 69, (69a), 70, (70a), 71, 72

Ensemble fonds

Non amortis: 7, 26, 47

Amortis: 7, 26, 47, 69, (69a), 70, (70a), 73, 74

Corps de vérin

Tous types: 15

Ensemble vis de réglage amortisseur

Type vis: 69, 70

Type cartouche: 69a, 70a

Ensemble vis de clapet AR/cartouche

Type vis: 69, 71, 72 (vérin diamètre supérieure à 100 mm)

Ensembles tige piston

Ce jeu de rechange comportent un piston totalement assemblé et des ensembles piston prêts au montage. Ils comportent un ensemble piston de type approprié – standard, LoadMaster ou faible friction, voir la liste des composants ci-après, plus un ensemble tige d'un des types listés ci-dessous.

Ensembles piston

Standard: 17, 125, 126, 127 x 2 LoadMaster: 17, 128, 129, 130 x 2 Faible friction: 17, 131, 132, 133 x 2

Ensembles tige

Simple tige – non amortie 34

Simple tige – amortisseur sur tête 35, 18 Simple tige – amortisseur sur fond 36

Simple tige - amortisseurs sur tête et fond 37, 18

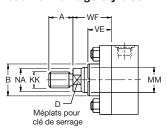
Double tige - non amorties 57, 60

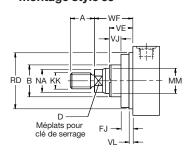
Double tige – amortisseur côté plus robuste 58, 60, 18 Double tige – amortisseur côté plus faible 58, 61, 18 Double tige – amortisseurs sur tête et fond 58, 61, 18 x 2

Réparations

Bien que les vérins HMI et HMD soient conçus de façon à rendre toute opération d'entretien ou de réparation le plus aisé possible, certaines opérations peuvent être effectuées uniquement à l'usine. Dans l'esprit de notre politique de réviser le vérin comme à l'état neuf, toute pièce endommagée sera remplacée. Si le coût de la réparation dépassait le prix d'un vérin neuf nous vous en aviserions.

* Commande de Classes de joints


Les numéros de repère figurant aux tableaux précédents se rapportent aux joints de la Classe 1, indiqué par le dernier chiffre

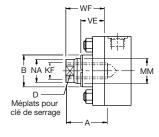

Gammes HMI et HMD

Toutes les extrémités de tige sont disponibles avec deux ou quatre côtés – voir les limites de pression, page 23. Les vérins HMI sont disponibles avec toutes les tailles de tige, styles d'extrémité de tige et filetages d'extrémité de tige indiqués dans le tableau ci-dessous. Les vérins HMD sont uniquement disponibles avec les numéros de tige 1 et 2, et uniquement avec les filetages d'extrémité de la tige surlignés en jaune dans le tableau. La combinaison souhaitée du diamètre de tige, du filetage des extrémités de tige et du nombre de méplats peut être identifiée à partir du tableau ci-dessous et sélectionnée dans la codification de commande en page 29.

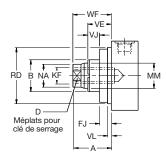
Extrémité de tige de style 1, 2, 4 & 7 – toutes sauf le montage style JJ

Extrémité de tige de style 1, 2, 4 & 7 – forme de montage style JJ

Style 1 (4 méplats) Style 2 (4 méplats) Style 5 (4 méplats)


Extrémité de tige styles 5 et 9 - vérins à course courte

L'extrémité de tige styles 5 et 9 ne sera pas utilisée pour les vérins d'alésage 160 ou 200 mm avec course de 50 mm ou inférieure. Veuillez nous consulter en décrivant en détail l'application requise.


Extrémité de tige style 3

Le code 3 indique les extrémités de tige en option spécial. Veuillez joindre, à la commande, un croquis avec les dimensions ou une description détaillée de même que les dimensions souhaitées pour les cotes de KK ou KF, A, pour la tige sortie (WF – VE) et pour la forme du filetage.

Extrémité de tige de styles 5 et 9 – toutes sauf le montage style JJ

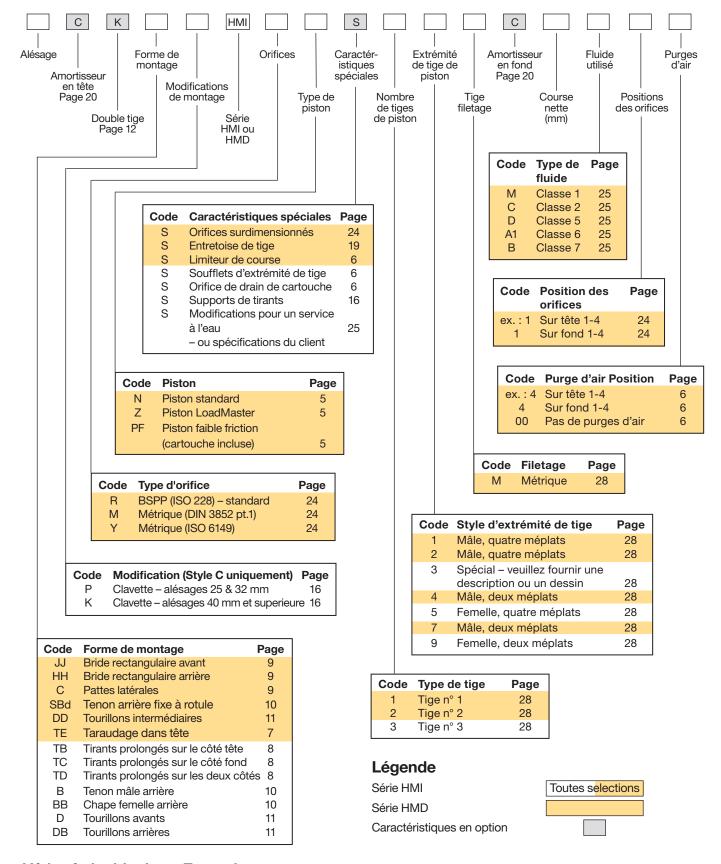
Extrémité de tige de styles 5 et 9 – forme de montage style JJ

Dimensions des extrémités de tige

consulter les limites de pression pour les tiges à la page 23

Alésage Ø	No. tige	MM tige Ø
25	1	12
23	2	18
32	1	14
32	2	22
40	1	18
40	2	28
	1	22
50	2	36
	3	28
	1	28
63	2	45
	3	36
	1	36
80	2	56
	3	45
	1	45
100	2	70
	3	56
	1	56
125	2	90
	3	70
	1	70
160	2	110
	3	90
	1	90
200	2	140

Style 4 (2 méplats)		Style 7 (2 méplats)		Style 9 (2 méplats)		B f9	D	NA	VE	WF
KK	Α	KK	Α	KF	Α					
M10x1,25	14	_	-	M8x1	14	24	10	11	16	25
M14x1,5	18	M10x1,25	14	M12x1,25	18	30	15	17	16	25
M12x1,25	16	-	_	M10x1,25	16	26	12	13	22	35
M16x1,5	22	M12x1,25	16	M16x1,5	22	34	18	21	22	33
M14x1,5	18	-	_	M12x1,25	18	30	15	17	16	35
M20x1,5	28	M14x1,5	18	M20x1,5	28	42	22	26	22	33
M16x1,5	22	_	_	M16x1,5	22	34	18	21	22	
M27x2	36	M16x1,5	22	M27x2	36	50	30	34	25	41
M20x1,5	28	M16x1,5	22	M20x1,5	28	42	22	26	22	
M20x1,5	28	_	_	M20x1,5	28	42	22	26	22	
M33x2	45	M20x1,5	28	M33x2	45	60	39	43	29	48
M27x2	36	M20x1,5	28	M27x2	36	50	30	34	25	
M27x2	36	-	_	M27x2	36	50	30	34	25	
M42x2	56	M27x2	36	M42x2	56	72	48	54	29	51
M33x2	45	M27x2	36	M33x2	45	60	39	43	29	
M33x2	45	_	_	M33x2	45	60	39	43	29	
M48x2	63	M33x2	45	M48x2	63	88	62	68	32	57
M42x2	56	M33x2	45	M42x2	56	72	48	54	29	
M42x2	56	_	_	M42x2	56	72	48	54	29	
M64x3	85	M42x2	56	M64x3	85	108	80	88	32	57
M48x2	63	M42x2	56	M48x2	63	88	62	68	32	
M48x2	63	_	_	M48x2	63	88	62	68	32	
M80x3	95	M48x2	63	M80x3	95	133	100	108	32	57
M64x3	85	M48x2	63	M64x3	85	108	80	88	32	
M64x3	85	-	-	M64x3	85	108	80	88	32	
M100x3	112	M64x3	85	M100x3	112	163	128	138	32	57
M80x3	95	M64x3	85	M80x3	95	133	100	108	32	


Seulement Style JJ								
VL min	RD f8	۷J	FJ					
3	38	6	10					
3	42	12	10					
3	62	6 12	10					
4	74	6 9 6	16					
	75	6						
4	88	13 9	16					
4	82 105	5 9	20					
	92	7						
5	125	10 7	22					
	105	9	20					
5	150	10	22					
	125	10	22					
5	170	7	25					
	150	10	22					
5	210	7	25					

Sauf spécification contraire, toutes les dimensions sont en mm.


110

Gammes HMI/HMD

Vérins à double tige - Exemple

Accessoires

Veuillez indiquer dans la commande si les accessoires doivent être assemblés sur le vérin ou fournis séparément.

Parker dans le monde

Europe, Moyen Orient, Afrique

AE – Émirats Arabes Unis, Dubai Tél: +971 4 8127100 parker.me@parker.com

AT – Autriche, Wiener Neustadt Tél: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Europe de l'Est, Wiener Neustadt Tél: +43 (0)2622 23501 900 parker.easteurope@parker.com

AZ - Azerbaïdjan, Baku Tél: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgique, Nivelles Tél: +32 (0)67 280 900 parker.belgium@parker.com

BY - Biélorussie, Minsk Tél: +375 17 209 9399 parker.belarus@parker.com

CH - Suisse, Etoy Tél: +41 (0)21 821 87 00 parker.switzerland@parker.com

CZ - République Tchèque, Klecany

Tél: +420 284 083 111 parker.czechrepublic@parker.com

DE – Allemagne, Kaarst Tél: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Danemark, Ballerup Tél: +45 43 56 04 00 parker.denmark@parker.com

ES – Espagne, Madrid Tél: +34 902 330 001 parker.spain@parker.com

FI - Finlande, Vantaa Tél: +358 (0)20 753 2500 parker.finland@parker.com

FR - France, Contamine s/Arve Tél: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Grèce, Athènes Tél: +30 210 933 6450 parker.greece@parker.com

HU - Hongrie, Budapest Tél: +36 1 220 4155 parker.hungary@parker.com

IE - Irlande, Dublin Tél: +353 (0)1 466 6370 parker.ireland@parker.com IT – Italie, Corsico (MI) Tél: +39 02 45 19 21 parker.italy@parker.com

KZ – Kazakhstan, Almaty Tél: +7 7272 505 800 parker.easteurope@parker.com

NL - Pays-Bas, Oldenzaal Tél: +31 (0)541 585 000 parker.nl@parker.com

NO - Norvège, Asker Tél: +47 66 75 34 00 parker.norway@parker.com

PL - Pologne, Warszawa Tél: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com

RO – Roumanie, Bucarest Tél: +40 21 252 1382 parker.romania@parker.com

RU - Russie, Moscou Tél: +7 495 645-2156 parker.russia@parker.com

SE - Suède, Spånga Tél: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SK – Slovaquie, Banská Bystrica Tél: +421 484 162 252 parker.slovakia@parker.com

SL – Slovénie, Novo Mesto Tél: +386 7 337 6650 parker.slovenia@parker.com

TR - Turquie, Istanbul Tél: +90 216 4997081 parker.turkey@parker.com

UA - Ukraine, Kiev Tél +380 44 494 2731 parker.ukraine@parker.com

UK - Royaume-Uni, Warwick Tél: +44 (0)1926 317 878 parker.uk@parker.com

ZA – Afrique du Sud, Kempton Park

Tél: +27 (0)11 961 0700 parker.southafrica@parker.com

Centre européen d'information produits Numéro vert : 00 800 27 27 5374 (depuis AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, SK, UK, ZA)

Amérique du Nord

CA – Canada, Milton, Ontario Tél: +1 905 693 3000

US – USA, Cleveland (industriel) Tél: +1 216 896 3000

US - USA, Elk Grove Village (mobile)

Tél: +1 847 258 6200

Asie Pacifique

AU - Australie, Castle Hill Tél: +61 (0)2-9634 7777

CN – Chine, Shanghai Tél: +86 21 2899 5000

HK – Hong Kong Tél: +852 2428 8008

IN - Inde, Mumbai Tél: +91 22 6513 7081-85

JP – Japon, Fujisawa Tél: +81 (0)4 6635 3050

KR - Corée, Seoul Tél: +82 2 559 0400

MY - Malaisie, Shah Alam Tél: +60 3 7849 0800

NZ – Nouvelle-Zélande, Mt Wellington Tél: +64 9 574 1744

SG - Singapour Tél: +65 6887 6300

TH - Thaïlande, Bangkok Tél: +662 717 8140

TW - Taiwan, Taipei Tél: +886 2 2298 8987

Amérique du Sud

AR – Argentine, Buenos Aires Tél: +54 3327 44 4129

BR - Brésil, Sao Jose dos Campos Tel: +55 12 4009 3500

CL – Chili, Santiago Tél: +56 2 623 1216

MX - Mexico, Apodaca Tél: +52 81 8156 6000

VE – Venezuela, Caracas Tél: +58 212 238 5422

© 2011 Parker Hannifin Corporation. Tous droits réservés

Catalogue HY07-1150/FR, POD, 03/2011, ZZ

142, rue de la Forêt 74130 Contamine-sur-Arve Tél: +33 (0)4 50 25 80 25 Fax: +33 (0)4 50 25 24 25 parker.france@parker.com www.parker.com

Votre distributeur Parker